Hypoglycemia and the risk of cognitive impairment and dementia in elderly and senile patients with type 2 diabetes
https://doi.org/10.14341/DM10202
Abstract
Research results show that poor glycemic control and recurrent episodes of severe hypoglycaemia are associated with a decrease in cognitive function in elderly people with type 2 diabetes mellitus (T2DM). On the other hand, patients with diabetes mellitus associated with cognitive impairment/dementia are most at risk of developing hypoglycaemic conditions. It is obvious that the relationship between hypoglycaemia and dementia is very complex and has a mutually aggravating nature.
Studies also show that individuals of older age groups with diabetes and cognitive impairment have a high risk of developing hypoglycaemic conditions, such as unwanted side effects from glucose-lowering therapy. In this case, of particular interest is the question that is being actively studied at the present time, which is concerning the effect of different groups of glucose-lowering antidiabetic drugs on the cognitive status and the rate of cognitive decline in diabetic patients with cognitive impairment.
In this review, we attempted to summarise, systematise, and present data available in the literature concerning the effect of hypoglycaemia on the risk of cognitive impairment and dementia in elderly and senile patients with type-2 diabetes, as well as the degree of participation in this process of of various groups of sugar-lowering antidiabetic drugs.
About the Authors
Olga D. OstroumovaRussian Federation
MD, PhD, Professor
Elena V. Surkova
Russian Federation
MD, PhD
Irina V. Goloborodova
Russian Federation
MD, PhD, associate professor
Antonina V. Starodubova
Russian Federation
MD, PhD
Alexey I. Kochetkov
Russian Federation
MD, PhD, research associate
Tamara D. Kiknadze
Russian Federation
therapist
Gagik R. Galstyan
Russian Federation
MD, PhD, Professor
References
1. Global Age Watch Index 2015. Insight Report, Help Age International; 2015 [cited 2019 March 15]. Available from: http://www.helpage.org/global-agewatch
2. WHO. The epidemiology and impact of dementia: current state and future trends. Geneva: World Health Organization; 2015 [updated 2017 March 8]. Available from: https://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_epidemiology.pdf
3. World Alzheimer Report 2015. The global impact of dementia: an analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International; 2015 [cited 2019 March 17]. Available from: https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
4. Fratiglioni L, De Ronchi D, Agüero-Torres H. Worldwide prevalence and incidence of dementia. Drugs and Aging. 1999;15(5):365–375. doi: https://doi.org/10.2165/00002512-199915050-00004
5. World Alzheimer Report 2014. Dementia and risk reduction: an analysis of protective and modifiable risk factors. London: Alzheimer’s Disease International; 2014 [updated 2017 March 8]. Available from: http://www.alz.co.uk/research/WorldAlzheimerReport2014.pdf
6. Яхно Н.Н., Захаров В.В. Легкие когнитивные нарушения в пожилом возрасте // Неврологический журнал. – 2004 – Т. 9. – №1. – С. 4–8. [Yаhno NN, Zaharov VV. Mild cognitive disorders in the elderly. Journal of neurology. 2004;9(1):4–8. (In Russ.)]
7. Di Carlo A, Baldereschi M, Amaducci L, et al. Cognitive impairment without dementia in older people: prevalence, vascular risk factors, impact on disability. The Italian Longitudinal Study on Aging. J Am Ger Soc. 2000;48(7):775–782. doi: https://doi.org/10.1111/j.1532-5415.2000.tb04752.x
8. Wentzel C, Rockwood K, MacKnight C, et al. Progression of impairment in patients with vascular cognitive impairment without dementia. Neurology. 2001;57(4):714–716. doi: https://doi.org/10.1212/WNL.57.4.714
9. Busse A, Bischkopf J, Riedel-Heller SG, Angermeyer MC. Mild cognitive impairment: prevalence and incidence according to different diagnostic criteria. Results of the Leipzig Longitudinal Study of the Aged (LEILA 75+). Br J Psych. 2003;182:449–454.
10. IDF Diabetes Atlas, 8th edition. Brussels: International Diabetes Federation; 2017 [cited 2019 March 17]. Available from: https://www.idf.org/e-library/epidemiologyresearch/diabetes-atlas/134-idf-diabetes-atlas-8th-edition.html
11. Umegaki H. Type 2 diabetes as a risk factor for cognitive eimpairment: current in sights. ClinInterv Aging. 2014;9:1011–1019. doi: https://doi.org/10.2147/CIA.S48926
12. Zhang J, Chen C, Hua S, et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract. 2017;124:41–47. doi: https://doi.org/10.1016/j.diabres.2016.10.024
13. Остроумова О.Д., Суркова Е.В., Ших Е.В., и др. Когнитивные нарушения у больных сахарным диабетом 2 типа: распространенность, патогенетические механизмы, влияние противодиабетических препаратов // Сахарный диабет. − 2018. − Т. 21. − №4. – С. 307–318. [Ostroumova OD, Surkova EV, Chikh EV, et al. Cognitive impairment in patients with type 2 diabetes mellitus: prevalence, pathogenetic mechanisms, the effect of antidiabetic drugs. Diabetes Mellitus. 2018;21(4):307–318. (In Russ.)] doi: https://doi.org/10.14341/DM9660
14. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42(5):484–491. doi: https://doi.org/10.1111/j.1445-5994.2012.02758.x
15. Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig, 2013;4(6):640–650. doi: https://doi.org/10.1111/jdi.12087
16. Biessels GJ, Staekenborg S, Brunner E, et al. Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology. 2006;5(1):64–74. doi: https://doi.org/10.1016/s1474-4422(05)70284-2
17. Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. Plos One. 2009;4(1):41–44. doi: https://doi.org/10.1371/journal.pone.0004144
18. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591–604. doi: https://doi.org/10.1038/s41574-018-0048-7
19. Luchsinger JA, Reitz C, Patel B, et al. Relation of diabetes to mild cognitive impairment. Arch Neurol. 2007;64(4):570–575. doi: https://doi.org/10.1001/archneur.64.4.570
20. Roberts RO, Knopman DS, Geda YE, et al. Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 2014;10(1):18–26. doi: https://doi.org/10.1016/j.jalz.2013.01.001
21. Cooper C, Sommerlad A, Lyketsos CG, Livingston G. Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry. 2015;172(4):323–334. doi: https://doi.org/10.1176/appi.ajp.2014.14070878
22. Li JQ, Tan L, Wang HF, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry. 2016;87(5):476–484. doi: https://doi.org/10.1136/jnnp-2014-310095
23. Haroon NN, Austin PC, Shah B, et al. Risk of dementia in seniors with newly diagnosed diabetes: a population-based study. Diabetes Care. 2015;38(10):1868–1875. doi: https://doi.org/10.2337/dc15-0491
24. Secnik J, Cermakova P, Fereshtehnejad SM, et al. Diabetes in a large dementia cohort: clinical characteristics and treatment from the Swedish dementia registry. Diabetes Care. 2017;40(9):1159–1166. doi: https://doi.org/10.2337/dc16-2516
25. Bordier L, Doucet J, Boudet J, Bauduceau B. Update on cognitive decline and dementia in elderly patients with diabetes. Diabetes Metab. 2014;40(5):331–337. doi: https://doi.org/10.1016/j.diabet.2014.02.002
26. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 9-й вып., дополн. — М.: УП ПРИНТ, 2019. — 214 с. [Standards of specialized diabetes care. Ed by II Dedov, MV Shestakova, AYu Mayorov. 9th ed, updated. Moscow: UP PRINT; 2019. 214 р. (In Russ.)] doi: https://doi.org/10.14341/DM221S1
27. Abdelhafiz AH, Rodríguez-Mañas L, Morley JE, Sinclair AJ. Hypoglycemia in older people — a less well recognized risk factor for frailty. Aging and disease. 2015;6(2):156–167. doi: https://doi.org/10.14336/AD.2014.0330
28. Bramlage P, Gitt AK, Binz C, et al. Oral antidiabetic treatment in type-2 diabetes in the elderly: balancing the need for glucose control and the risk of hypoglycemia. Cardiovasc Diabetol. 2012;11:122. doi: https://doi.org/10.1186/1475-2840-11-122
29. Kaewput W, Thongprayoon C, Varothai N, et al. Prevalence and associated factors of hospitalization for dysglycemia among elderly type 2 diabetes patients: a nationwide study. World J Diab. 2019;10(3):212–223. doi: https://doi.org/10.4239/wjd.v10.i3.212
30. Quartuccio M, Buta B, Kalyani RR. Comparative effectiveness for glycemic control in older adults with diabetes. Curr Geri Rep. 2017;6(3):175–186. doi: https://doi.org/10.1007/s13670-017-0215-z
31. Chen Y, Liu Z, Yu Y, et al. Effect of recurrent severe hypoglycemia on cognitive performance in adult patients with diabetes: a meta-analysis. J Huazhong Univ Sci Technol. 2017;37(5):642–648. doi: https://doi.org/10.1007/s11596-017-1784-y
32. Aung PP, Strachan MW, Frier BM, еt al.; Edinburgh Type 2 Diabetes Study Investigators. Severe hypoglycemia and late-life cognitive ability in older people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabet Med. 2012;29(3):328–336. doi: https://doi.org/10.1111/j.1464-5491.2011.03505.x
33. Bruce DG, Davis WA, Casey GP, et al. Severe hypoglycaemia and cognitive impairment in older patients with diabetes: the Fremantle diabetes study. Diabetologia. 2009;52(9):1808–1815. doi: https://doi.org/10.1007/s00125-009-1437-1
34. Mattishent K, Loke YK. Bi-directional interaction between hypoglycaemia and cognitive impairment in elderly patients treated with glucose-lowering agents: a systematic review and meta-analysis. Diabetes, Obesity, Metab. 2016;18(2):135–141. doi: https://doi.org/10.1111/dom.12587
35. Yaffe K, Falvey CM, Hamilton N, et al. Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med. 2013;173(14):1300–1306. doi: https://doi.org/10.1001/jamainternmed.2013.6176
36. Chin SO, Rhee SY, Chon S, et al. Hypoglycemia is associated with dementia in elderly patients with type 2 diabetes mellitus: an analysis based on the Korea National Diabetes Program Cohort. Diabetes Res Clin Pract. 2016;122:54–61. doi: https://doi.org/10.1016/j.diabres.2016.09.027
37. Feinkohl I, Aung PP, Keller M, et al. Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: the Edinburgh type 2 diabetes study. Diabetes Care. 2014;37(2):507–515. doi: https://doi.org/10.2337/dc13-1384
38. Whitmer RA, Karter AJ, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009;301(15):1565–1572. doi: https://doi.org/10.1001/jama.2009.460
39. Mehta HB, Mehta V, Goodwin JS. Association of hypoglycemia with subsequent dementia in older patients with type 2 diabetes mellitus. J Gerontol A Biol Sci Med Sci. 2017;72(8):1110–1116. doi: https://doi.org/10.1093/gerona/glw217
40. Васенина Е.Е., Левин О.С. Когнитивные нарушения у пациентов с сахарным диабетом 2 типа // Эффективная фармакотерапия. − 2016. − №3. – С. 40–47. [Vasenina ЕЕ, Levin OS. Cognitive impairment in patients with type 2 diabetes mellitus. Effective pharmacotherapy. 2016;(3):40–47. (In Russ.)]
41. Mohseni S. Neurologic damage in hypoglycemia. Hand Clin Neurol. 2014;126:513–532. doi: https://doi.org/10.1016/B978-0-444-53480-4.00036-9
42. Ouyang YB, He QP, Li PA, et al. Is neuronal injury caused by hypoglycemic coma of the necrotic or apoptotic type? Neurochem Res. 2000;25(5):661–667. doi: https://doi.org/10.1023/A:1007563104170
43. Ferrand-Drake M, Zhu C, Gido G, et al. Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia. J Neurochem. 2003;85(6):1431–1442. doi: https://doi.org/10.1046/j.1471-4159.2003.01794.x
44. Joseph A, Antony S, Paulose CS. Increased glutamate receptor gene expression in the cerebral cortex of insulin induced hypoglycemic and streptozotocin-induced diabetic rats. Neuroscience. 2008;156(2):298–304. doi: https://doi.org/10.1016/j.neuroscience.2008.07.022
45. Auer RN. Hypoglycemic brain damage. Metab Brain Dis. 2004;19(3-4):169–175. doi: https://doi.org/10.1023/B:MEBR.0000043967.78763.5b
46. Suh SW, Gum ET, Hamby AM, et al. Hypoglycemic neuronal death is triggeredby glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007;117(4):910–918. doi: https://doi.org/10.1172/JCI30077
47. Tkacs NC, Dunn-Meynell AA, Levin BE. Presumed apoptosis and reduced arcuate nucleus neuropeptide Y and pro-opiomelanocortin mRNA in non-coma hypoglycemia. Diabetes. 2000;49(5):820–826. doi: https://doi.org/10.2337/diabetes.49.5.820
48. Robinson R, Krishnakumar A, Paulose CS. Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats. Cell Mol Neurobiol. 2009;29(3):365–372.doi: https://doi.org/10.1007/s10571-008-9328-4
49. Suh SW, Won SJ, Hamby AM, et al. Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab. 2009;29(9):1579–1588. doi: https://doi.org/10.1038/jcbfm.2009.80
50. Languren G, Montiel T, Julio-Amilpas A, Massieu L. Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochem Int. 2013;63(4):331–343. doi: https://doi.org/10.1016/j.neuint.2013.06.018
51. Smith L, Chakraborty D, Bhattacharya P, et al. Exposure to hypoglycemia and risk of stroke. Ann N Y Acad Sci. 2018;1431(1):25–34. doi: https://doi.org/10.1111/nyas.13872
52. Katon W, Pedersen HS, Ribe AR, et al. Effect of depression and diabetes mellitus on the risk for dementia: a national populationbased cohort study. JAMA Psychiatry. 2015;72(6):612–619. doi: https://doi.org/10.1001/jamapsychiatry.2015.0082
53. Punthakee Z, Miller ME, Launer LJ, et al.; ACCORD Group of Investigators; ACCORD-MIND Investigators. Poor cognitive function and risk of severe hypoglycemia in type 2 diabetes: post hoc epidemiologic analysis of the ACCORD trial. Diabetes Care. 2012;35(4):787–793. doi: https://doi.org/10.2337/dc11-1855
54. Abbatecola AM, Bo M, Armellini F, et al. Tighter glycemic control is associated with ADL physical dependency losses in older patients using sulfonylureas or mitiglinides: results from the DIMORA study. Metabolism. 2015;64(11):1500–1506. doi: https://doi.org/10.1016/j.metabol.2015.07.018
55. Prinz N, Stingl J, Dapp A, et al. High rate of hypoglycemia in 6770 type 2 diabetes patients with comorbid dementia: a multicenter cohort study on 215,932 patients from the German/Austrian Diabetes Registry. Diabetes Res Clin Pract. 2016;112:73–81. doi: https://doi.org/10.1016/j.diabres.2015.10.026
56. Feil DG, Rajan M, Soroka O, et al. Risk of hypoglycemia in older veterans with dementia and cognitive impairment: implications for practice and policy. J Am Geriatr Soc. 2011;59(12):2263–2272. doi: https://doi.org/10.1111/j.1532-5415.2011.03726.x
57. McMillan JM, Mele BS, Hogan DB, Leung AA. Impact of pharmacological treatment of diabetes mellitus on dementia risk: systematic review and meta-analysis. BMJ Open Diab Res Care. 2018;6(1):е000563. doi: https://doi.org/10.1136/bmjdrc-2018-000563
58. Bruce DG, Davis WA, Nelson M, et al. Severe hypoglycaemia does not explain the relationship between long duration insulin therapy and late-life cognitive impairent in type 2 diabetes: the Fremantle Diabetes Study. Alzheimer’s and dementia. 2014;10:295. doi: https://doi.org/10.1016/j.jalz.2014.04.490
59. KH H, Jeon JY, Kim HJ. Severe hypoglycemia and risk of dementia in person with diabetes mellitus. Journal of Diabetes Investigation. 2017;8:35.
60. Whitmer R, Quesenberry Jr C, Allison J. Anti-hyperglycemic therapy and risk of dementia: a new user cohort study. Alzheimer’s and dementia. 2013;1:136. doi: https://doi.org/10.1016/j.jalz.2013.04.077
61. Huang CC, Chung CM, Leu HB, et al. Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS One. 2014;9(1):e87095. doi: https://doi.org/10.1371/journal.pone.0087095
62. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485–493. doi: https://doi.org/10.3233/JAD-2011-101524
63. Kuan YC, Huang KW, Lin CL, et al. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt B):77–83. doi: https://doi.org/10.1016/j.pnpbp.2017.06.002
64. Ng TP, Feng L, Yap KB, et al. Longterm metformin usage and cognitive function among older adults with diabetes. J Alzheimer’s Disease. 2016;41(1):61–68. doi: https://doi.org/10.3233/JAD-131901
65. Weinstein G, Davis-Plourde KL, Conner S, еt al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer’s disease: Pooled analysis from 5 cohorts. PLoS ONE. 2019;14(2):e0212293. doi: https://doi.org/10.1371/journal.pone.0212293
66. American Diabetes Association. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2019. In: Standards of Medical Care in Diabetes 2019. Diabetes Care 2019;42(Suppl. 1):S1–S183. doi: https://doi.org/10.2337/dc19-S014
67. Davies MJ, D’Alessio DA, Fradkin J, et al. Correction to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2019;62(5):873. doi: https://doi.org/10.1007/s00125-019-4845-x
68. Maruthur NM, Tseng E, Hutfless S, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016;164(11):740–751. doi: https://doi.org/10.7326/m15-2650
69. Leonard CE, Han Х, Brensinger СМ, et al. Comparative risk of serious hypoglycemia with oral antidiabetic monotherapy: a retrospective cohort study. Pharmacoepidemiol Drug Safety. 2018;27(1):9–18. doi: https://doi.org/101102/pds.4337
70. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med. 2002;137(1):25–33. doi: https://doi.org/10.7326/0003-4819-137-1-200207020-00009
71. Li J, Benashski SE, Venna VR, McCullough LD. Effects of metformin in experimental stroke. Stroke. 2010;41(11):2645–2652. doi: https://doi.org/10.1161/STROKEAHA.110.589697
72. Aggarwal N, SinglaА, Mathieu С, et al. Metformin extended-release versus immediate-release: an international, randomized, double-blind, head-to-head trial in pharmacotherapy-naïve patients with type 2 diabetes. Diabetes Obes Metab. 2018;20(2):463–467. doi: https://doi.org/10.1111/dom.13104
73. Campbell JM, Stephenson MD, de Courten B, et al. Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J Alzheimer’s Disease. 2018;65(4):1225–1236. doi: https://doi.org/10.3233/JAD-180263
74. Guo M, Mi J, Jiang QM, et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol. 2014;41(9):650–656. doi: https://doi.org/10.1111/1440-1681.12265
75. Markowicz-Piasecka M, Sikora J, Szydłowska A, et al. Metformin — a future therapy for neurodegenerative diseases. Pharm Res. 2017;34(12):2614–2627. doi: https://doi.org/10.1007/s11095-017-2199-y
76. Herath PM, Cherbuin N, Eramudugolla R, Anstey KJ. The effect of diabetes medication on cognitive function: evidence from the PATH through life study. BioMed Res Int. 2016;2016:7208429. doi: https://doi.org/10.1155/2016/7208429
77. Patil SP, Jain PD, Ghumatkar PJ, et al. Neuroprotective effect of metformin in Parkinsons disease in mice. Neuroscience. 2014;277:747–754. doi: https://doi.org/10.1016/j.neuroscience.2014.07.046
78. Chung M, Chenb Y, Pei D, et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochimica et Biophysica Acta. 2015;1852:720–731. doi: https://doi.org/10.1016/j.bbadis.2015.01.006
Review
For citations:
Ostroumova O.D., Surkova E.V., Goloborodova I.V., Starodubova A.V., Kochetkov A.I., Kiknadze T.D., Galstyan G.R. Hypoglycemia and the risk of cognitive impairment and dementia in elderly and senile patients with type 2 diabetes. Diabetes mellitus. 2020;23(1):72-87. (In Russ.) https://doi.org/10.14341/DM10202

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).