The dynamics of invasive and noninvasive blood glucose monitoring methods: Recent trends
Abstract
Improved prognoses of patients with type 2 diabetes are primarily determined by the extent of blood glucose control (correction of both hyper- and hypoglycemia and normalization of blood glucose levels). The proper identification and timely correction of abnormal blood glucose levels require frequent blood glucose monitoring by the patient. Currently used methods for the self-monitoring of blood glucose have significant drawbacks that limit their use. The most significant problems with these methods include insufficient accuracy, invasiveness and high cost, leading to noncompliance and difficult assessment of disease status. Such factors underscore the need for a noninvasive, cost-effective and highly accurate method to measure blood glucose levels. There are several different approaches for the noninvasive measurement of blood glucose levels, including optical analysis, ultrasound and bioimpedance. The concept of a noninvasive glucometer was launched more than 30 years ago. Nevertheless, most noninvasive technologies are still in early stages of development and are not used in clinical practice. This review describers the most promising developments in this area.
About the Authors
Alina Yur'evna BabenkoRussian Federation
Head of scientific laboratory of diabetology, MD
Competing Interests: No conflict of interest
Yulia Alexeevna Kononova
Russian Federation
graduate student of institute of endocrinology of Federal Almazov North-West Medical Research Centre
Competing Interests: No conflict of interest
Alexandr Ivanovich Tsiberkin
Russian Federation
clinical intern of institute of endocrinology of Federal Almazov North-West Medical Research Centre
Competing Interests: No conflict of interest
Michail Konstantinovich Khodzitsky
Russian Federation
Chief of Terahertz Biomedicine Laboratory,
Vice-chief of International Institute ofPhotonics and Optoinformatics, Associate professor, Photonics and Optical Information Technologies Dept. ITMO University
Competing Interests: No conflict of interest
Elena Nilkolaevna Grineva
Russian Federation
director of institute of endocrinology of Federal Almazov North-West Medical Research Centre, MD, professor
Competing Interests: No conflict of interest
References
1. 1.IDF Diabetes 4th ed., International Diabetes Federation, 2009.
2. 2.Diabetes Atlas, 6th ed. Available from: http://www.idf.org/diabetesatlas/5e/regional-overviews
3. 3.Stratton IM. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Bmj. 2000;321(7258):405-412. doi: 10.1136/bmj.321.7258.405
4. 4.Zoungas S, Patel A, Chalmers J, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363(15):1410-1418. doi: 10.1056/NEJMoa1003795
5. 5.Su G, Mi S, Tao H, et al. Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc Diabetol. 2011;10:19. doi: 10.1186/1475-2840-10-19
6. 6.Muggeo M, Verlato G, Bonora E, et al. Long-term Instability of Fasting Plasma Glucose, a Novel Predictor of Cardiovascular Mortality in Elderly Patients With Non Insulin-Dependent Diabetes Mellitus: The Verona Diabetes Study. Circulation. 1997;96(6):1750-1754. doi: 10.1161/01.cir.96.6.1750
7. 7.Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36(11):3008-3013. doi: 10.1097/CCM.0b013e31818b38d2
8. 8.Wang X, Zhao X, Dorje T, et al. Glycemic variability predicts cardiovascular complications in acute myocardial infarction patients with type 2 diabetes mellitus. Int J Cardiol. 2014;172(2):498-500. doi: 10.1016/j.ijcard.2014.01.015
9. 9.Davis WA, Bruce DG, Davis TM. Does self-monitoring of blood glucose improve outcome in type 2 diabetes? The Fremantle Diabetes Study. Diabetologia. 2007;50(3):510-515. doi: 10.1007/s00125-006-0581-0
10. 10.The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977-986. doi: 10.1056/NEJM199309303291401
11. 11.Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 1998;352(9131):837-853. doi: 10.1016/s0140-6736(98)07019-6
12. 12.Khalil OS. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol Ther. 2004;6(5):660-697. doi: 10.1089/dia.2004.6.660
13. 13.Oomen PH, Kant GD, Dullaart RP, et al. Acute hyperglycemia and hyperinsulinemia enhance vasodilatation in Type 1 diabetes mellitus without increasing capillary permeability and inducing endothelial dysfunction. Microvasc Res. 2002;63(1):1-9. doi: 10.1006/mvre.2001.2347
14. Yeh SJ, Khalil OS, Hanna CF, et al. Near-infrared thermo-optical response of the localized reflectance of intact diabetic and nondiabetic human skin. J Biomed Opt. 2003;8(3):534-544. doi: 10.1117/1.1578641
15. Tuchin VV, Khalil OS, Yeh S-j, et al. Response of near-infrared localized reflectance signals of intact diabetic human skin to thermal stimuli. Proc SPIE. 2003:142-148. doi: 10.1117/12.518754
16. Vo-Dinh T, Yeh S-J, Grundfest WS, et al. Differences in thermal optical response between intact diabetic and nondiabetic human skin. 2003;4958:213. doi: 10.1117/12.476146
17. Wilson SB, Jennings PE, Belch JJF. Detection of microvascular impairment in type I diabetics by laser Doppler flowmetry. ClinPhysiol. 1992;12(2):195-208. doi: 10.1111/j.1475-097X.1992.tb00306.x
18. Rendell M, Bamisedun O. Diabetic cutaneous microangiopathy. Am J Med. 1992;93(6):611-618. doi: 10.1016/0002-9343(92)90193-f
19. Stansberry KB, Shapiro SA, Hill MA, et al. Impaired Peripheral Vasomotion in Diabetes. Diabetes Care. 1996;19(7):715-721. doi: 10.2337/diacare.19.7.715
20. Integrity Applications [Internet]. Ha’Yahalomim St. Ashdod ISRAEL [updated 2016 Oct 31; cited 2016 Nov 1]. Available from: http://www.integrity-app.com
21. Lee S, Nayak V, Dodds J, et al. Glucose measurements with sensors and ultrasound. Ultrasound Med Biol. 2005;31(7):971-977. doi: 10.1016/j.ultrasmedbio.2005.04.004
22. MacKenzie HA, Ashton HS, Spiers S, et al. Advances in Photoacoustic Noninvasive Glucose Testing. Clin Chem. 1999;45(9):1587
23. So C-F, Choi K-S, Wong TKS, et al. Recent advances in noninvasive glucose monitoring. Med Devices (Auckland, N.Z.). 2012;5:45-52. doi: 10.2147/MDER.S28134
24. Arnold MA, Small GW. Noninvasive Glucose Sensing. Anal Chem. 2005;77(17):5429-5439. doi: 10.1021/ac050429e
25. Tura A, Maran A, Pacini G. Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria. Diabetes Res Clin Pract. 2007;77(1):16-40. doi: 10.1016/j.diabres.2006.10.027
26. Brancaleon L, Bamberg MP, Sakamaki T, et al. Attenuated total reflection-Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo. J Invest Dermatol 2001;116(3):380-386. doi: 10.1046/j.1523 1747.2001.01262.x
27. Berger AJ, Koo T-W, Itzkan I, et al. Multicomponent blood analysis by near-infrared Raman spectroscopy. Applied Optics. 1999;38(13):2916. doi: 10.1364/ao.38.002916
28. Brown JQ, Deckert V, Gusev SI, et al. Blood optical properties at various glucose level values in THz frequency range. 2015;9537:95372A. doi: 10.1117/12.2195959 Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2398299
29. Malik BH, Cote GL. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring. J Biomed Opt. 2010;15(1):017002. doi: 10.1117/1.3290819
30. TOPCON [Internet]. 75-1, Hasunuma-cho, Itabashi-ku, Tokyo 174-8580, Japan [updated 2016 Oct 31; cited 2016 Nov 1]. Available from: http://www.topcon.co.jp/en
31. Coakes RL, Brubaker RF. Method of measuring aqueous humor flow and corneal endothelial permeability using a fluorophotometry nomogram. Invest Ophthalmol Vis Sci. 1979;18(3):288-302
32. Larin KV, Ele drisi MS, Motamedi M, et al. Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography. A pilot study in human subjects. 2002;25(12):2263-2267. doi: 10.2337/diacare.25.12.2263
33. Yeh Sj. Monitoring Blood Glucose Changes in Cutaneous Tissue by Temperature-modulated Localized Reflectance Measurements. Clinical Chemistry. 2003;49(6):924-934. doi: 10.1373/49.6.924
34. Heinemann L, Kramer U, Klotzer HM, et al. Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests. Non-Invasive Task Force. Diabetes Technol Ther. 2000;2(2):211-220. doi: 10.1089/15209150050025168
35. Diapedia.org [Internet]. Driebit Oudezijds Voorburgwal 282 1012 GL, Amsterdam. [updated 2016 Oct 31; cited 2016 Nov 1]. Available from: http://www.diapedia.org
36. Ermolina I, Polevaya Y, Feldman Y. Analysis of dielectric spectra of eukaryotic cells by computer modeling. European Biophysics Journal. 2000;29(2):141-145. doi: 10.1007/s002490050259
37. Polevaya Y, Ermolina I, Schlesinger M, et al. Time domain dielectric spectroscopy study of human cells. Biochim Biophys Acta. 1999;1419(2):257-271. doi: 10.1016/s0005-2736(99)00072-3
38. Russell RJ, Pishko MV, Gefrides CC, et al. A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel. Anal Chem. 1999;71(15):3126-3132. doi: 10.1021/ac990060r
39. Pickup JC, Hussain F, Evans ND, et al. Fluorescence-based glucose sensors. Biosens Bioelectron. 2005;20(12):2555-2565. doi: 10.1016/j.bios.2004.10.002
40. Diabetesnet [Internet]. 1030 West Upas San Diego, CA 92103 [updated 2016 Oct 31; cited 2016 Nov 1]. Available from: http://www.diabetesnet.com
41. Guo D, Zhang D, Zhang L, Lu G. Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis. Sensors and Actuators B: Chemical. 2012;173:106-113. doi: 10.1016/j.snb.2012.06.025
42. Ahn W, Kim J-T. Blood Glucose Measurement Principles of Non-invasive Blood Glucose Meter: Focused on the Detection Methods of Blood Glucose. Int J Biomed Eng Technol. 2012;33(3):114-127. doi: 10.9718/jber.2012.33.3.114
43. The Pursuit of Noninvasive Glucose: “Hunting the Deceitful Turkey”, 3rd edition. Book of the Editor by John L. Smith. 2014; 162 p. Available from: http://www.researchgate.net/publication/261098618
Supplementary files
Review
For citations:
Babenko A.Yu., Kononova Yu.A., Tsiberkin A.I., Khodzitsky M.K., Grineva E.N. The dynamics of invasive and noninvasive blood glucose monitoring methods: Recent trends. Diabetes mellitus. 2016;19(5):397-405. (In Russ.)