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Patients with Type 2 diabetes (DMT2) have an 

increased risk of cardiovascular disease (CVD). 

Macrovascular disease in diabetes remains the leading 

cause of mortality: early studies suggested that, on 

average, patients with diabetes but without a previous 

history of myocardial infarction have a similar risk of 

experiencing a future cardiac event as subjects without 

diabetes but with a prior myocardial infarction(1). This 

high cardiovascular risk is attributed in part to the 

harmful effect of hyperglycaemia per se on vascular 

wall, and, in part, to the coexistence of other traditional 

CV risk factors in the cluster of metabolic syndromes, 

such as hypertension, atherogenic dyslipidemia, and 

central obesity(2). For this reason, the normalization of 

glucose, blood pressure, lipid profile, and body weight is 

considered a priority by all available. The pathophysiology 

of vascular damage in diabetes is complex and involves 

abnormalities in endothelial cells, vascular smooth 

muscle cells, and platelet function(3). Hyperglycaemia 

reduces endothelium-derived nitric oxide (NO) 

availability, and compromises vascular function through 

several mechanisms, mainly involving overproduction 

of reactive oxygen species (ROS) from mitochondria and 

cytoplasmic sources. As result of all these pathological 

changes, the development of atherosclerotic plaque 

in people with diabetes is a complex, progressive 

process, characterized by early vascular inflammation 

and endothelial dysfunction, leading to monocyte 

recruitment and subsequent formation of fatty streaks(4). 

In the light of this knowledge, and of the recent findings 

from cardiovascular outcome trials (CVOT), it is of great 

importance to understand the molecular mechanisms 

underlying the direct CV protection of each different 

class of glucose-lowering drugs (GLD), independently 
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Пациенты с сахарным диабетом 2 типа (СД2) чаще всего умирают от сердечно-сосудистых заболеваний (ССЗ). Мета-

болический контроль является краеугольным камнем как для первичной, так и для вторичной профилактики ССЗ: он 

вдвойне важен, поскольку нормализация гликированного гемоглобина (HbA
1c

) позволяет не только отсрочить де-

бют и прогрессирование микрососудистого осложнения, но также помогает снизить риск серьезных нежелательных 

сердечно-сосудистых событий (MACE). Однако из доступных сахароснижающих препаратов некоторые оказывают 

прямое кардиопротективное действие, независимо от способности достигать целевых метаболических показате-

лей. В этом обзоре я обращу внимание на патофизиологические механизмы, лежащие в основе кардиопротективных 

свойств различных сахароснижающих препаратов, существующие доказательно обоснованные данные касательно 

этих свойств, потенциальные побочные эффекты и различные фенотипы пациентов, подходящие под определенное 

лечение. Понимание патофизиологических механизмов кардиопротекции каждого препарата и ограничений их при-

менения помогает врачам индивидуализировать лечение метаболических нарушений у пациентов с СД2.
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Patients with type 2 diabetes mellitus die most frequently from cardiovascular disease (CVD). Metabolic control is a cor-

nerstone of both primary and secondary prevention of CVD: its important is two-fold since the normalization of HbA
1c

 not 

only counteracts the onset, and the progression of microvascular complication, but has also important and positive role in 

reducing the risk of major adverse cardiovascular events (MACE). However, among the available glucose-lowering medi-

cations, some exert a direct CV protection independently from their ability to normalize metabolic control. In this review 

I will highlight the pathophysiological mechanisms underlying the claimed cardiovascular protection of the diff erent glu-

cose-lowering drugs, the available evidence-based data for their protection, the potential adverse eff ects, and the diff erent 

phenotypes of patients eligible for a specifi c treatment. The knowledge of pathophysiological mechanisms for CV protection 

of each glucose-lowering medication, and the constraints of their use supports the health care professionals to individualize 

the normalization of metabolic control in patients with type 2 diabetes mellitus.
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from their effectiveness in reducing HbA1c. It is also 

of importance to appreciate contraindications and 

potential adverse effects in order to assigned the optimal 

diabetes treatment to each patient suffering from this 

disease (Fig. 1).

METFORMIN

Metformin is considered the first-line agent by 

all guidelines for the treatment of T2DM: in patients 

tolerant to the drug, its use is contraindicated when 

estimated glomerular filtration rate (eGFR) falls below 

30 ml/min/1.73m2. Its main action is to increase glucose 

uptake, while inhibiting intestinal glucose absorption, 

and hepatic gluconeogenesis. Metformin triggers an 

array of intracellular biochemical pathways, the most 

important being the activation the cellular energy 

sensor AMP-activated protein kinase (AMPK), which is 

known to positively affect the endothelial function(5). 

In isolated endothelial cells exposed to elevated 

glucose concentration, it restrains the production of 

ROS by inhibiting protein kinase C, a serine-threonine 

dependent kinase(6). In the United Kingdom Prospective 

diabetes Study (UKPDS)-34, in 268 overweight patients 

randomized to metformin, this drug, compared to 

placebo, induced a 36% and a 39% relative risk reduction 

for all-cause mortality and myocardial infarction, 

respectively(7). However, a recent meta-analysis 

questioned the potential of metformin to reduce the CVD 

risk(8). Metformin appears to be safe also in patients with 

T2DM and heart failure (HF), and, it is linked to a better 

outcome(9). Among patients initiating sulfonylureas 

(SUs) for diabetes treatment versus metformin, the latter 

had a lower risk for HF and CV death(10). It has been 

demonstrated that the risk for myocardial infarction in 

patients with metformin monotherapy is lower than in 

patients in whom sulfonylureas were added as second 

line drugs(11). In conclusion, in patients with T2DM, 

tolerant to the drug,  and eGFR above 30 ml/min/1.73m2, 

with or without CVD and/or HF, metformin appears to 

be safe, and it may probably exert a direct CV protection 

(Table 1) (12).

SULPHONYLUREAS AND METIGLINIDES

These GLD stimulate insulin secretion by closing the 

ATP-sensitive potassium channels (KATP channels) in 

the pancreatic β-cells: however, KATP channels are also 

present in myocytes where they shorten action potential 

to reduce cardiac workload, and in vascular smooth muscle 

cells where they induce vasodilatation, thus providing a 

protective mechanism during episodes of ischaemia(13). 

The available SUs have different binding affinity for 

KATP channels, being highest for glibenclamide (and for 

repaglinide) and lowest for gliclazide.  In a small trial we 

assessed the effects of treatment with glibenclamide or 

insulin on the extension of left ventricular myocardial 

dysfunction induced by acute ischemia: in 19 patients 

with type 2 diabetes and coronary artery disease 

randomly assigned to either insulin or glibenclamide 

treatment ischemic myocardial dysfunction induced by 

dipyridamole infusion was less severe during treatment 

with insulin than with glibenclamide(14). Does this effect 

of SUs have significant clinical read-out? Apparently not. 

In the UKPDS and the  Action in Diabetes and Vascular 

Disease: Preterax and Diamicron MR Controlled Evaluation 

(ADVANCE) trials, there was no evidence for a direct 

detrimental effect of SU on the CV system: more evidence 

is available from observational studies in which patients 

on SU treatment were more susceptible to CVD and 

hospitalization for heart failure (hHF) (15, 16) although 

this is not consistently observed for all SUs (17, 18). 

However, not all observational studies are unanimous in 

demonstrating such negative effect. In patients assessed 

within 30 days of acute coronary syndrome, there was no 

significantly increased risk of death or death/HF in those 

exposed to KATP channel inhibitors versus patients not 

exposed to KATP channel inhibitors prior to their acute 

coronary syndrome(19). The detrimental effect of SUs on 

CV system is rather indirect than direct, and mediated 

by their ability to induce hypoglycemia(20), especially 

when added in addition to other secretagogues (21). 

Repaglinides, a metiglinide, may also interfere with 

ischemic preconditioning(22): however, an excess of CV 

events was not observed in the Nateglinide and Valsartan 

in Impaired Glucose Tolerance Outcomes Research 

(NAVIGATOR) trial in patients randomized to nateglinide 

(23). In conclusion, SUs and metiglinides may have direct 

detrimental effects on CV system, although their adverse 

value is, probably, mostly linked to their propensity to 

induce hypoglycaemia (Table 1).

ACARBOSE

Acarbose decreases glucose absorption by the gut by 

inhibiting α-glycosidase: therefore, its alleged positive 

action on CV is mediated by decreased postprandial 

glucose peaks(24, 25). The Study to Prevent NIDDM (STOP-

NIDDM) trial has shown that 300 mg of acarbose a day led 

to a 50% decrease in CV events, and a 34% decrease in new 

cases of hypertension compared with those receiving 

placebo (26). A subsequent meta-analysis confirmed 

these positive effects(27), although these results were 

disputed(28, 29). Recently, the role of acarbose in the 

frequency of CV events and, in the incidence of T2DM 

Fig. 1. The most prominent adverse eff ects observed in patients treated 

with insulin, thiazolidinediones (TZDs) and sulphonylureas (SUs): 

hypoglycemia, increase in body weight, and heart failure. 
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has been assessed in Chinese patients with impaired 

glucose tolerance and established CVD(30): this trial 

demonstrates that acarbose did not reduce the risk of 

major adverse CV events, but did reduce the incidence of 

diabetes. In conclusion, the data are too scanty to firmly 

conclude that decreasing postprandial hyperglycaemia 

with acarbose might prevent CVD in patients with T2DM.

THIAZOLIDINEDIONES

Thiazolidinediones (TZDs) activate the nuclear 

receptors peroxisome proliferator-activated receptors 

(PPARs), which, in turn, trigger several other genes 

affecting the storage of fatty acids in adipocytes: this 

action results in a significant decrease in circulating 

free fatty acids, and in a simultaneous decrease in 

blood glucose concentration(31). PPARγ modulate 

also inflammation, especially in the context of the 

atherosclerotic process, and stimulate cholesterol efflux 

transporter ABCA1(32). Among TZDs, pioglitazone is 

the most widely used after the adverse consequences 

observed by the others of the same class: it exerts a 

direct anti-atherosclerotic effect in the arterial wall in 

humans(33). In the prospective pioglitazone clinical trial 

in macrovascular events (PROactive) trial, involving 5238 

patients with T2DM and established CVD, those who 

received pioglitazone had similar incidence of the primary 

composite endpoint, but in the subgroup of patients 

who had a previous MI, there was a significant 28% risk 

reduction for fatal and a significant 37% reduction for 

acute coronary syndrome(34). In the TOSCA.it trial the 

authors compared the long-term effects of pioglitazone 

versus sulfonylureas on metformin background on CV 

events in patients with type 2 diabetes: they showed, 

in the per protocol analysis, that in patients in primary 

prevention, pioglitazone could be beneficial compared to 

SUs in terms of durability of glycaemic control, frequency 

of hypoglycaemia, and reduction of events(35).

Pioglitazone also exerts a direct protective effect at 

the level of cerebral circulation: in nondiabetic, insulin-

resistant patients with a history of recent stroke, this 

drug decreased by 26% the composite primary endpoint 

fatal or nonfatal stroke or MI(36). Pioglitazone, as the 

other PPARγ activators, induces fluid retention, edema, 

and sometimes precipitates or exacerbates HF in patients 

at risk for this condition [39]. In conclusion, the most 

Table 1. Phenotyping glucose-lowering drugs for patients with type 2 diabetes mellitus

Glocose-lowering 

Drug
Purse Avoid

Metformin
Patients with type 2 diabetes irrespective of 

BW, history of CVD and/or HF

Before angiography

eGFR < 30 ml/min

Severe COPD

Ongoing ischemic episode and HF

GI intolerance

Excessive alcohol intake

Sulphonylureas

Lean patients without target organ damage 

and normal (50-60% total daily caloric intake) 

carbohydrate intake

Risk for hypoglycemia

Elderly patients

eGFR < 60 ml/min

Ongoing ischemic episode and HF

Excessive alcohol intake

Dementia

Acarbose
Lean/obese patients with or without CVD or/

and HF

GI intolerance

Renal impairment

Thiazolidinediones

Overweight/Obese patients with evidence of 

subclinical or clinical CVD

Overweight/Obese patients with prior history 

of stroke or TIA

Previous history of/or ongoing HF

Proliferative retinopathy or macular edema

End-stage kidney disease

DPP-4 inhibitors
Lean/Overweight patients with or without 

history of CVD and HF

Patients with history of HF only for saxagliptin

History of pancreatitis or gallstone

GLP-1 receptor agonists
Overweight/obese patients with or without

history of CVD

History of pancreatitis or gallstone

eGFR < 15 ml/min

Ongoing HF

SGLT2 inhibitors
Lean/overweight/obese patients with or 

without history of CVD and HF

eGFR < 45 ml/min

Insuffi  cient carbohydrate intake

Excessive alcohol intake

Ischemic peripheral artery disease

Recurrent UTI or GI

Notes: GI: genital infection; UTI: urinary tract infections; eGFR: estimated glomerular fi ltration rate; HF: heart failure; BW: body weight; TIA: transitory 

ischemic attack
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widely used PPARγ, pioglitazone, determines a direct, 

widespread, and protective vascular effect, which is, 

however, counterbalanced by an increased incidence of 

HF (Table 1).

DIPEPTIDYL PEPTIDASE 4 INHIBITORS

Dipeptidyl peptidase-4 inhibitors (DPP-4-I), also 

called gliptins, increase the concentration of glucagon-

like peptide-1 by 2 to 4 folds. Fifty per cent of native 

GLP-1(7-36) is degraded in roughly 1 minute by the 

DPP-4 or CD26, a 110 kDa peptidase that belongs to a 

unique class of membrane associated peptidases(37). 

The net effects of DPP-4 inhibition, independently from 

GLP-1, on the potential beneficial actions of GLP-1 

cleaved forms on the cardiovascular system are largely 

unknown. Beyond its effect on insulin and glucagon 

secretions, GLP-1 is known to positively affect CV 

system by decreasing vascular adhesion molecules, 

increasing endothelial nitric oxide (NO), decreasing pro-

inflammation, decreasing endothelin synthesis, platelet 

activation, and smooth muscle cell proliferation(38). 

Beside incretin hormones, there are several proteins 

that have a penultimate alanine, proline, or serine in 

the N-terminus start site, the most important for the CV 

system being the stromal cell-derived factor-1α (SDF-

1α), and brain natriuretic peptide (BNP). SDF-1α and its 

receptor CXCR4 play a prominent role in the trafficking 

and homing of hematopoietic stem cells: SDF-1α levels 

increase in both plasma and ischemic tissue shortly 

after ischemic injury, in response to hypoxia which 

upregulates HIF-1α(39). In this context, it has been 

shown that DPP-4 contributes to SDF-1α degradation 

after myocardial infarction: DPP-4 inhibition blocks the 

degradation of SDF-1α, which, in turn, allows a much 

more efficient recruitment of progenitor cell in the site 

of ischemia (40). The hypothesis that DPP-4 inhibition 

prevents the degradation of SDF-1α, thus favoring 

the homing of progenitor cells with a consequent 

amelioration of ulcer healing, has been tested in 

humans in the context of peripheral artery disease 

and its complication. We have shown that diabetes 

delayed wound healing, with reduced granulation tissue 

thickness and vascularity, and increased apoptosis as a 

consequence of an increased apoptosis, and decreased 

proliferation of bone marrow-derived progenitor cell 

(41). Marfella and associates reported that in patients 

with Type 2 diabetes and at least one full-thickness 

wound below the ankle, the treatment with the DPP-4-I 

vildagliptin leads to a more rapid wound closure rate at 

week 12 than in controls, and the doubling in complete 

healing of the index ulcer (42). In a retrospective analysis 

conducted in 82,169 propensity score-matched pairs 

of DPP-4 inhibitor users and nonusers with Type 2 

Diabetes, DPP-4 inhibitor users were associated with a 

lower risk of both peripheral arterial disease and risk of 

lower-extremity amputation than nonusers(43). More 

recently, Long and colleagues have recently tested the 

hypothesis that DPP-4 inhibitors can improve diabetic 

wound healing, independently from their beneficial 

effects on glycaemic control: the DPP-4 inhibition, in 

patients with DMT2, seems to restore the ability of 

the bone marrow to release progenitor cells(44). The 

importance of this observation is two-fold. First, diabetes 

is characterized by a “diabetic stem cell mobilopathy” 

determined, at least in part, by the presence of a bone 

marrow microangiopathy and by the maladaptive 

regulation of CXCR4/SDF-1α(45). DPP-4 inhibition may 

affect natriuresis in both animals and humans: one 

month of sitagliptin treatment increases circulating 

levels SDF-1α 1-67, and induces natriuresis by blocking 

distal tubular sodium reabsorption, distal to the macula 

densa, without affecting renal haemodynamic, and 

blood pressure(46). Another DPP-4 sensitive substrate 

relevant to CV homeostasis is BNP, which is synthesized 

as a 134-amino acid precursor protein (preproBNP) and 

is subsequently processed during secretion to form the 

108-aa peptide, proBNP(47). On the extracellular surface 

of cardiomiocytes, proBNP interacts with corin to form 

the active BNP 1–32 and NT-proBNP 1-76; there is also 

a circulating proBNP 1-108. All these forms of BNP are 

substrates for DPP-4 since they all have a proline in the 

second N-terminal position. BNP concentrations are 

reduced in people with obesity, insulin resistance, and 

diabetes, and this deficiency may contribute to their 

CV risk(48). Theoretically, DPP-4 inhibition could exert 

beneficial effects on cardiac function, by increasing the 

proportion of circulating BNP 1–32, and NT-proBNP 1-76. 

Thus, one can speculate that the administration of DPP-

4 inhibitors should, supposedly, positively affect the CV 

system beyond their ability to decrease plasma glucose. 

However, we have shown that the acute treatment with 

a DPP-4 inhibitor, at least in patients without a history 

of HF, exerts no clinically-meaningful effects on BNP and 

NT-proBNP(49). Meta-analysis of phase 2 and 3 clinical 

trials and observational studies have shown a substantial 

neutrality of this class of drug on CV safety(50, 51). In all 

CVOT, the DPP-4 inhibitors saxagliptin, alogliptin, and 

sitagliptin met the primary endpoint of non-inferiority 

vs. placebo with respect to MACE (CV mortality, non-

fatal myocardial infarction, and non-fatal stroke)(52-

54). No significant differences were reported in those 

parameters such as heart rate, and blood pressure, 

potentially modifiable by the DPP-4 inhibition, and linked 

to its pleiotropic activity. The Saxagliptin Assessment of 

Vascular Outcomes Recorded in Patients with Diabetes 

Mellitus (SAVOR) randomized 16,492 patients with Type 

2 Diabetes, with a history of or at high risk for CVD, to 

saxagliptin or placebo in addition to usual care. At the 

end of follow-up period (median of 2.1 years), the rate of 

primary end-point (a composite of cardiovascular death, 

non-fatal MI or ischemic stroke) was similar in the two 

groups. Interestingly, in those patients randomized to 

saxagliptin, the risk for hospitalization for heart failure 

was significantly higher(55). Several speculations, yet 

unproven, have been proposed for this increased risk of 

heart failure, which was observed only for this drug of 

the class but not with the others. Notably, in both SAVOR 

and in the Examination of Cardiovascular Outcomes with 

Alogliptin versus Standard of Care (EXAMINE) trials, heart 

failure was not included among the pre-specified end-

points. Recently, a RCT specifically assessing the effect of 

vildagliptin on heart function in patients with DMT2 and 

heart failure, has been completed, and showed that 52 



ОБЗОР380  |  Сахарный диабет /  Diabetes  M  el l i tus

weeks treatment with vildagliptin 50 mg twice daily was 

neutral vs. placebo in left ventricular ejection fraction 

and geometry(56). Following the results of the SAVOR 

trials, numerous observational studies have conducted 

either to confirm or rule-out the association between 

DPP-4 inhibitors treatment and heart failure: most of 

them have excluded this link except for saxagliptin(57, 

58). There is an ongoing CVOT testing the safety of 

linagliptin against glimepiride: the CARdiovascular 

Outcome Trial of LINAgliptin Versus Glimepiride in Type 

2 Diabetes (CAROLINA)(59). It will be interesting to 

assess the risk of a DPP-4 inhibitor vs. a sulphonylurea 

(glimepiride) on heart failure. In conclusion, DPP-4-I play 

an important role in the management of patients with 

DMT2; beyond their ability to improve glucose control, 

they also exert numerous pleiotropic actions, which 

have been proven in several experimental conditions 

but their evidence in humans are flimsy, and at best not 

harmful in patients with type 2 diabetes treated with 

these drugs. 

GLUCAGON-LIKE PEPTIDE 1 RECEPTOR AGONISTS

Glucagon-like peptide 1 (GLP1) is mainly secreted by 

the intestine in response to eating but it is rapidly cleaved 

by DPP4: to overcome this problem, either mimetic or 

analogues of GLP-1 receptor agonists (GLP-1RA) should 

be administered. They stimulate insulin secretion 

and decrease glucagon secretion with a significant 

reduction of plasma glucose concentrations. Multiple 

GLP-1R agonists have been developed for the treatment 

of patients with type 2 diabetes(60). The first clinically 

approved agent, exenatide, is delivered as a twice-daily 

injection or via a once-weekly microsphere-coupled 

formulation; lixisenatide, structurally related, is a DPP-4–

resistant GLP-1RA agonist for once-daily administration. 

Liraglutide is a long-acting, acylated, DPP-4–resistant 

human GLP-1 analog administered once daily, which 

noncovalently associates with albumin, while dulaglutide 

is a DPP-4–resistant GLP-1R agonist with a modified 

immunoglobulin G fragment crystallizable region 

enabling extended pharmacokinetics. GLP-1R activation 

may influence the CV system: treatment of human 

umbilical vein endothelial cells (HUVEC) with liraglutide 

increased endothelial NO synthase phosphorylation 

and NO production in a 5'AMP-activated protein kinase 

(AMPK)–dependent manner(61). Treatment with GLP-

1 reduced reactive oxygen species (ROS) and vascular 

cell adhesion molecule-1 mRNA expression in HUVEC 

after exposure to advanced glycation end products; 

furthermore, the activation of GLP-1R reduced tumor 

necrosis factor (TNF)-α, and decreased the expression 

of inflammatory genes. Sprague–Dawley rats treated 

with either GLP-1 or albiglutide exhibited a marked 

reduction in infarct size after temporary occlusion of the 

left anterior descending (LAD) coronary artery(62). The 

cardioprotective actions of GLP-1R agonists have also 

been demonstrated in large animal, where exenatide 

decreased infarct size, increased insulin levels, and 

improved LV systolic function in pigs subjected to 75 

minutes of LAD coronary artery occlusion followed by 

72 hours of reperfusion(63). In humans, GLP-1 infusion 

enhanced acetylcholine-induced forearm blood flow, 

while GLP-1 do not affect sodium nitroprusside–

regulated blood flow(64). In humans, in subjects with 

diabetes on background metformin therapy, exenatide 

treatment for 16 weeks improves flow-mediated 

vasodilation of the brachial artery after 5 minutes 

of forearm ischemia compared with patients treated 

with glimepiride(65).  In the context of left ventricular 

function, a 72-hour infusion of GLP-1 initiated 3.5 

hours after coronary angioplasty within 6.5 hours from 

symptom onset in patients undergoing acute myocardial 

infarction (MI), improved LV ejection fraction (LVEF; 

29±2% versus 39±2%), and regional myocardial wall 

motion(66). Acute infusion of GLP-1 30 minutes before 

dobutamine stress echocardiography and continuing 

for 30 minutes into recovery in 14 patients with 

stable coronary artery disease and normal resting LV 

function prevented the development of post-ischaemic 

myocardial dysfunction(67). Finally, the infusion of GLP-

1 after completion of the first balloon occlusion reduced 

LV dysfunction during dual-inflation balloon angioplasty 

in 20 nondiabetic patients with single-vessel coronary 

artery disease(68). In patients undergoing percutaneous 

coronary intervention to treat ST-segment elevation MI, 

exenatide reduced infarct size relative to the ischemic 

area at risk and increased the myocardial salvage index 

assessed via cardiac magnetic resonance at ≈90 days 

postinfusion(69). Exenatide did not reduce mortality or 

improve LV contractility(70). In a study of 58 patients 

with ST-segment elevation MI and thrombolysis in MI 

flow grade 0, exenatide enhanced LVEF at 6 months 

post–percutaneous coronary intervention, and reduced 

infarct size at 1 month post–percutaneous coronary 

intervention(71). GLP-1RA exert favorable effect also 

on myocardial performance, although the findings are 

not consistent: 5-week infusion of GLP-1 in 12 patients 

(8 with T2DM) with New York Heart Association class III/

IV heart failure improved LVEF, oxygen consumption, 

and 6-minute walk distance times(72). At variance, in a 

phase 2, double-blind, placebo-controlled randomized 

clinical trial of patients with established heart failure and 

reduced LVEF, liraglutide (1.8 mg/d) had no significant 

effect on the primary end point (time to death, time to 

rehospitalization for heart failure, and time-averaged 

proportional change in N-terminal pro-B-type natriuretic 

peptide level from baseline to 180 days)(73). A meta-

analysis of 33 RCTs assessed the role of GLP-1RA on 

CV risk: no significant difference was found in terms of 

outcome as compared either to comparators or placebo, 

although this class of drugs is able to significantly reduce 

several risk factors for CVD such as body weight, blood 

pressure, total and HDL cholesterol(74). Notably, in all 

trials an increase in heart rate (1 to 4 bpm) was reported. 

Four CVOT are now available in which GLP-1 RA have been 

tested in high and very high-risk patients with T2DM: the 

Evaluation of Lixisenatide in Acute Coronary Syndrome 

(ELIXA) trial, the Liraglutide Effect and Action in Diabetes: 

Evaluation of Cardiovascular Outcome Results (LEADER) 

trial, the Trial to Evaluate Cardiovascular and Other 

Long-term Outcomes with Semaglutide in Subjects with 

Type 2 Diabetes (SUSTAIN-6) trial, and the Exenatide 

Study of Cardiovascular Event Lowering (EXSCEL) trial, 
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respectively(75-78). In the ELIXA, lixisenatide, and in 

the EXSCEL, exenatide qw, were neutral compared to 

placebo regarding the primary end-point (CV death, 

non-fatal MI and non-fatal stroke); on the contrary, in 

both LEADER and SUSTAIN-6, liraglutide and its weekly 

analogue semaglutide, were superior to placebo in 

reducing the risk for primary end-point. Liraglutide 

reduced the primary end-point by 13% , CV death by 

22%, and by 15% all-cause death. In the SUSTAIN-6 the 

primary end-point was observed in 6.6% of patients 

randomized to semaglutide and in the 8.9% in those 

to placebo; CV and all-cause death were similar in the 

2 groups while non-fatal stroke was significantly lower 

in patients randomized to semaglutide (HR, 0.61; 95% 

CI, 0.38 a 0.99; P=0.04). In the LEADER trial a was also 

observed significant reduction of nephropathy end-

point in those randomized to liraglutide as compared to 

those on placebo (HR 0.78; 95% C.I. 0.67-0.92; p=0.003). 

Similarly, semaglutide was able to significantly decrease 

the risk of new or worsening nephropathy as compared 

to placebo (HR 0.64 95% C.I. 0.46-0.88; p=0.005). Thus, 

their CV effects appear more consistent with beneficial 

actions counteracting the mechanisms of plaque 

formation and progression rather than interfering with 

volume overload. In conclusion, GLP-1RA are beneficial 

for CV disease, although their effects appear not class-

related: the differences in terms of CV protection within 

the class deserves further scrutiny, although the use 

of this class of drug overall is associated with lower 

mortality as compared to DPP-4 users or placebo or no 

treatment(79). 

SODIUM GLUCOSE COTRASPORTER 2 INHIBITORS

High-capacity, low-affinity sodium glucose co-

transporters (SGLT) 2 are located in the renal proximal 

tubular epithelium, and reabsorb filtered glucose. 

SGLT2 inhibition leads to glycosuria, and to a parallel 

insulin-independent reduction of HbA1c from 0.7% 

to 1.0% depending on the initial HbA1c value(80). 

The glucose loss links to a caloric loss, which accounts 

for a body weight loss ranging from 2 to 3 kg. SGLT2 

inhibition induces a modest uricosuric effect. SGLT2s are 

responsible for roughly 5% of sodium reabsorption at the 

proximal tubule: their inhibition produces a natriuretic 

effect with a simultaneous decrease in plasma volume, 

blood pressure, and a contraction of circulating volume, 

thus reducing cardiac pre-load(81). SGLT2 inhibition 

increases sodium/chloride delivery to the macula densa, 

which activates tubule-glomerular feedback followed 

by afferent arteriolar vasoconstriction, and reduced 

intra-glomerular pressure. These intraglomerular effects 

may account for the reduction in albuminuria. In the 

presence of a reduction in eGFR (<45 ml/min/1.73 m2), 

the glucose-lowering effect observed with SGLT2 is 

blunted, although the natriuretic effect may persist: this 

effect probably accounts for most of the protective CV 

effects of these drugs, although several hypotheses have 

been proposed(82). Certainly, the combined sustained 

glucose-lowering effect, the osmotic diuresis, and the 

weight loss, all these concur to the CV protection, which 

has been shown by the two CVOT trials available for the 

SGLT2 inhibitors, the EMPA-REG and the Canagliflozin 

Cardiovascular Assessment Study (CANVAS) Program, 

respectively(83, 84). They demonstrate a significant 

reduction vs. placebo of the primary combined end-

point (0.86; 95% C.I. 0.74-0.99 p=0.04 for EMPA-REG; 

0.86; 95% C.I. 0.75-0.97 p=0.02 for CANVAS), and a 

reduction of hospitalization for heart failure (0.65 95% 

C.I. 0.500.85 p=0.002 for EMPA-REG and 0.67 95% C.I. 

0.52-0.87 for CANVAS). Both studies were neutral for 

MI, fatal and non-fatal, and stroke, fatal and not fatal. 

Anticipated by their effects on renal physiology, both 

trials reported a consistent renal protection, while 

they do not exert any protection within the cerebral 

circulation despite their ability to decrease blood 

pressure. In a post-hoc analysis of the EMPA-REG study, 

after 12 week, the placebo-adjusted geometric mean 

ratio of UACR change from baseline with empagliflozin 

was -7% in patients with normoalbuminuria, -25% in 

patients with microalbuminuria, and -32% in patients 

with macroalbuminuria, thus suggesting that their 

positive effects on this condition parallel the severity 

of albuminuria(85). Their mechanism of action restricts 

their use for eGFR above 45 ml.min-1.1.73 m-2 but 

some preliminary reports indicate that their functional 

targets may not be restricted to normal eGFR. Similarly, 

in a prespecified exploratory analysis, canagliflozin 

treatment was also associated with a reduced risk of 

sustained loss of kidney function, attenuated eGFR 

decline, and a reduction in albuminuria (HR 0.53, 95% C.I. 

0•33-0•84)(86). In the primary analysis of the EMPA-REG 

study, a non-statistical significant increase in stroke was 

noticed among patients randomized to empagliflozin; 

this issue has been further investigated, and in a 

sensitivity analysis based on events during treatment or 

≤90 days after last dose of drug, the HR for stroke with 

empagliflozin versus placebo was 1.08 (95% C.I. 0.81-1.45; 

p=0.60). The comparative effects of canagliflozin among 

participants with and without a history of cardiovascular 

disease (secondary versus primary prevention) were 

assessed(87): this analysis shows that canagliflozin 

reduced cardiovascular and renal outcomes with no 

statistical evidence of heterogeneity of the treatment 

effect across the primary and secondary prevention 

groups. Further studies are needed to corroborate 

the efficacy of this class of drugs on CV risk reduction, 

independently of prevention stage. Based on the 

results of both EMPA-REG and CANVAS trials, beside the 

preeminent action on volume, their anti-atherosclerotic 

effect differs in different regions, and it appears to follow 

a U-shape curve: it is presently unknown whether this is 

determined either by a specific organ response to their 

action or by specific vascular regulation or by a different 

hierarchy in the negative influence of each different risk 

factor.

Interested has been upturned by the finding that SGLT2 

inhibitors are capable to inhibit Na/H counter-transport 

in cardiomyocites with a consequent improvement in 

contractility(88): the clinical read-out for this observation 

needs further studies. In conclusion SGLT2-I is a new class 

of drugs with important, and positive effects, both direct 

and indirect, both on micro- and microcirculation, on CV 

system: it will be relevant to explore the possibility to 
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