Клиника и дифференциальная диагностика сахарного диабета 2 типа в детском возрасте

Т.Л. Кураева 1 , И.А. Дубинина 2

¹ФГУ Эндокринологический научный центр, Москва (директор — академик РАН и РАМН И.И. Дедов) ²ФГУП ГНЦ РФ «ГосНИИгенетика», Москва (директор - к.б.н. М.Ю. Бебуров)

Обзор представляет определение, оценку распространенности, клинические особенности, дифференциальный диагноз сахарного диабета 2 типа (СД2) в детском и подростковом возрасте. Сфокусировано внимание на необходимости иммунологических и молекулярно-генетических исследований для верификации диагноза, а также активного выявления СД2 в группах повышенного риска. Ключевые слова: сахарный диабет 1 и 2 типа, МОДУ, дифференциальная диагностика

Clinical features and differential diagnosis of type 2 diabetes mellitus in children

T.L. Kuraeva, I.A. Dubinina

¹Endocrinological Research Centre, Moscow

²State Scientific Center of Russian Federation "Gniigenetika", Moscow

This review was designed to evaluate prevalence, specific clinical features, and differential diagnosis of type 2 diabetes mellitus (DM2) in children and adolescents. Special emphasis is laid on the importance of immunological and molecular-genetic studies for the verification of diagnosis and active case detection in h groups.

Key words: diabetes mellitus, MODY, differential diagnosis

ахарный диабет 2 типа (СД2) – мультифакторное, полигенное заболевание, характеризующееся инсулинорезистентностью и недостаточностью секреции инсулина.

В последние десятилетия СД стал международной проблемой, поскольку на протяжении жизни он развивается у 1 из 10 человек, и распространенность его во всем мире во многих этнических группах и среди людей с разным социально-экономическим уровнем неуклонно нарастает [1]. В 2001 г. было зарегистрировано 170 миллионов людей с СД2. К 2015 г. это число, как ожидается, достигнет 300 миллионов, а к 2030 г. – 366 миллионов (www.who.int). Осложнения диабета станут главным экономическим бременем в здравоохранении. В 1997 г. затраты здравоохранения в США были оценены в 98 миллиардов долларов [2]. Прямые затраты в здравоохранении на СД составляют от 2,5 до 15% ежегодного бюджета здравоохранения во всем мире (www.who.int).

Первоначально СД2 был болезнью главным образом лиц среднего и старшего возраста. Существовали проблемы в осознании того факта, что возраст манифестации понизился в основном у взрослых третьего и четвертого десятилетия [3, 4]. Это увеличение также затронуло в прошлом десятилетии и молодежь. Таким образом, это увеличение, включающее уже детей и молодежь с СД2, было обозначено как эпидемия. Выявление значительного количества пациентов с СД2 в США до 1990-х гг. было редкостью для большинства педиатрических центров. Однако к 1994 г. пациенты с СД2 представляли уже до 16% новых случаев диабета у детей в городских популяциях, а к 1999 г. в зависимости от географического положения диапазон новых случаев СД2 колебался от 8 до 45% и был непропорционально высоко представлен среди популяционных меньшинств [5]. Выявлены расовые различия в заболеваемости СД2 у детей, подобные тем, которые наблюдаются у взрослых пациентов. Большинство детей с СД2 в США принадлежат расам с высокой распространенностью СД2, например, афроамериканцы, американские индейцы, азиатские индусы, но не европейские белые, несмотря на то, что белое население разделяет подобный образ жизни [6]. Этот диагноз был первоначально расценен скептически, но в настоящее

время СД2 – это заболевание, требующее проведения активного диагностического поиска у всех молодых людей с признаками и симптомами диабета, а также в группах повышенного риска. Кроме США, о появлении СД2 в детском возрасте сообщили во всем мире, включая Японию, Индию, Австралию и Великобританию. Его выявление, как полагают, связано с нарастанием ожирения в детском возрасте [7, 8]. В России первое описание СД2 у 14-летней девочки было сделано в 2001 г. [9]. В европейских популяциях наблюдается более низкая распространенность СД2 у молодежи, чем в США [10, 11]. В РФ с каждым годом стало регистрироваться все больше случаев СД2 у детей и подростков [12], а более частая диагностика заболевания в значительной степени связана с информированностью врачей [13–14].

Предпосылки для определения типа диабета

Появление СД2 у детей и подростков создает серьезные трудности для диагностики типа диабета. Согласно современному определению, СД1 может быть теоретически диагностирован при наличии аутоантител к β-клетке и снижении секреции инсулина, в то время как пациенты с СД2 не имеют антител к β-клетке, а секреция инсулина достаточная. Практически проводить дифференциальный диагноз между СД1 и СД2 во многих случаях может оказаться достаточно сложно. При этом возможна существенная степень их наложения.

Инсулин и С-пептид в сыворотке крови

СД2 развивается при неадекватной секреции инсулина и увеличенной потребности в нем, связанной с инсулинорезистентностью [15]. У пациентов с СД2 и плазменный инсулин, и концентрация С-пептида обычно высоки [16]. Секреция инсулина зависит от продолжительности заболевания и может изменяться от отсроченного, но заметно повышенного уровня в ответ на стимуляцию глюкозой до абсолютно сниженного. Хроническая гипергликемия может вызвать транзиторный дефицит инсулина («глюкозо-

токсичность») изначально с низкой концентрацией инсулина

в плазме несмотря на инсулинорезистентность. Уровни инсу-

лина и С-пептида поэтому могут быть обманчиво низкими

при остром ухудшении метаболических процессов в период

манифестации заболевания [5]. Наоборот, «резервы инсу-

лина» могут быть довольно высокими у пациентов с СД1

в течение длительного периода времени. Поэтому измерение

инсулина и С-пептида может быть полезным в дифференци-

альной диагностике СД1 и СД2, особенно когда уровень их

повышен, однако существенная степень «наложения» суще-

ствует во время острой манифестации. Из-заэтого наложения

измерение уровней инсулина и С-пептида помогает в оценке

функции островкового аппарата поджелудочной железы, но не является абсолютно диагностическим критерием.

Таблица 1

Клинические особенности СД2 у детей

Ожирение

СД2 у родственников 1 ст. родства

Acanthosis nigricans

Признаки инсулинорезистентности

- Гипертония
- Дислипидемия
- Неалкогольный жировой гепатоз

Яичниковая гиперандрогения (синдром поликистоза яичников)

Апное во сне

Неклассическая манифестация

- Кандидоз
- Диагноз диабета при рутинном обследовании

Аутоантитела

Аутоантитела к островковым клеткам (ICA), аутоантитела к инсулину (IAA), глутаматдекарбоксилазе (GADA) и тирозинфосфатазе (ІСА-512 или островковый антиген 2), используемые отдельно или в комбинации, могут быть полезны для дифференциальной диагностики. Как сообщается, аутоантитела выявляются у 90% пациентов при манифестации СД1 [17]. Наоборот, наличие аутоантител у взрослых с клинически предполагаемым СД2 связано в конечном счете с высоким риском появления инсулинозависимости, условно обозначаемой как латентный аутоиммунный диабет [18, 19]. Таким образом, отсутствие антител теоретически должно бы§ть ассоциировано с СД2, в то время как их наличие указывает на СД1. Однако взаимоотношения между экспрессией антител и патофизиологией диабета не являются полностью прямыми. Недавно проведено сравнительное исследование ІСА и Т-клеточного ответа к островковым белкам у детей (моложе 18 лет) с клиническим диагнозом СД2 (n=19), СД1 (n=37) или с неопределенным диагнозом (n=16) [20]. Клинический диагноз был основан на данных клиники: кетоз в анамнезе, признаки инсулинорезистентности, наличие acanthosis nigricans и ожирения. Пациенты, имевшие клинические признаки и СД1, и СД2, были отнесены в группу с неопределенным диагнозом. Все дети с СД1 имели аутоантитела и/или реактивность Т-клеток к белкам островка Лангерганса. Однако 14 из 19 человек с СД2 (73%) имели положительные антитела ІСА, и 6 из 14 (42%) имели Т-клеточный ответ на белки островка. В группе с неопределенным диагнозом 11 из 16 (68%) пациентов были положительны по аутоантителам, и 6 из 16 (37%) пациентов были положительны по ответу Т-клеток на белки островка. В другом исследовании из 48 детей и подростков с клинически определенным СД2 8,1% пациентов имели ICA, 30,3% — GAD, 34,8% — IAA без предыдущей инсулинотерапии. Интересно, что ни у одного из испанских пациентов в этой когорте не было обнаружено аутоантител к β-клетке [21]. С другой стороны, когда диагноз СД2 был ограничен пациентами с доказанной сохраненной секрецией инсулина (уровень С-пептида натощак >0,5 nmol/L), только 4 из 37 пациентов (10,8 %) были положительны по GAD, 3 – по IAA и 2 - по двум антителам [22].

Патофизиология аутоиммунного СД2 неясна. Нельзя исключить, что это — аутоиммунный СД1 у лиц с избытком веса или ожирением и исходной инсулинорезистентностью. Однако наиболее признанным в настоящее время является предположение, что образование антител является ответной реакцией на усиление процессов апоптоза в β -клетках, стимулированное ожирением и инсулинорезистентностью [23].

Исследование аутоантител, специфичных для СД1, нужно проводить у всех детей с клиническим диагнозом СД2 из-за высокой частоты аутоиммунитета против островковых клеток при «типичном» СД2, поскольку наличие антител может свидетельствовать о развитии более ранней потребности в инсулине.

Кроме того, наличие антител может направить диагностический поиск на исследование аутоиммунитета к щитовидной железе и других аутоиммунных заболеваний.

Представленные данные демонстрируют, как трудно различить СД1 и СД2 на основании результатов клинического обследования. Вероятно, потому, что ожирение и инсулинорезистентность становятся более распространенными среди населения развитых стран и не соответствуют определению СД1. Соответственно, островковый аутоиммунитет выявляется в высоком проценте у детей с клиническими признаками, позволяющими предполагать наличие СД2. Это может быть ожидаемым, так как детское население становится вообще более тучным и инсулинорезистентным, включая пациентов с СД1. Поэтому клинические особенности становятся менее надежными для проведения дифференциальной диагностики. Когда дополнительная информация о секреции инсулина включается в диагностический алгоритм, становятся более ясными взаимоотношения с аутоиммунитетом [5]. Кроме того, технические проблемы сохраняются при определении антител, и результаты могут различаться между лабораториями. Оптимизация и стандартизация этих исследований в дальнейшем позволит улучшить и облегчить диагностику. Таким образом, необходима тщательная биохимическая, иммунологическая и гормональная диагностика у пациентов, прежде, чем определять тип диабета и в последующем – терапевтическую тактику.

Клинические особенности

Результаты исследований пациентов в разных частях мира свидетельствуют о существенных клинических особенностях течения СД2 в детском и подростковом возрасте [5] (табл. 1). Во-первых, СД2 возникает почти исключительно у детей и молодежи, которые имеют избыток массы тела или входят в группу риска по развитию ожирения (индекс массы тела (ИМТ) — 85-я возрастная процентиль и ИМТ — 95-я процентиль соответственно). Во-вторых, возраст диагностики в большинстве случаев приходится на середину пубертатного периода. И, наконец, от 50 до 75% пациентов имеют больного родителя и до 90% пациентов имеют по крайней мере одного родственника первой или второй степени родства с СД2 [6, 24, 25].

Ожирение

Самым очевидным клиническим фактором риска СД2 у детей и подростков, вероятно, является выраженное ожирение. Средний ИМТ (вес в килограммах, разделенных на квадрат роста в метрах) у пациентов с СД2, по опубликованным данным, колеблется от 35 до 39 кг/м², в то время как нормальный диапазон (5-я — 95-я процентиль) для детской популяции составляет 15-27 кг/м². Около трети детей с СД2 имеют ИМТ больше 40 кг/м², что указывает на морбидное

ожирение, а 17% имеют ИМТ больше 45 кг/м². В недавнем исследовании [26] была детализирована клиническая манифестация СД2 у европейских детей и подростков в возрасте 11—16,9 лет. Средний ИМТ был 33,7 кг/м² со средним стандартным отклонением ИМТ (SDS) 2,8. Только 10% имели избыток массы тела, 20% имели умеренное ожирение и 70% имели тяжелую степень ожирения.

Однако, несмотря на выраженную ассоциацию между ожирением и СД2, важно отметить, что ожирение не защищает детей и подростков от СД1. Более того, согласно современной гипотезе акселерации, которая стремится связать повышение уровня заболеваемости СД1 с возрастающей частотой инсулинорезистентности, распространение последней ведет к изменению фенотипа больных СД1 [27]. Таким образом, поскольку распространенность ожирения в общей популяции увеличивается, дети с СД1 станут более тучным наряду с их сверстниками. Среди 128 детей с диагностированным СД2, основанным на клинических проявлениях, у 36% выявили по крайней мере один тип аутоантител к β-клетке [28]. Примечательно, что эти дети не отличались значительно от детей с СД2 без аутоантител по возрасту, полу, степени ожирения, липидному профилю, артериальному давлению, уровню С-пептида, глюкозы и гликированного гемоглобина A1c (HbA_{1C}), так же как по частоте аутоантител к щитовидной железе и по потребности в инсулинотерапии в будущем. По мнению Pinhas-Hamiel O., Zeitler P. [5], поскольку стартовое лечение инсулином у пациентов с СД1 важно, диагноз СД2 должен ставиться с осторожностью и только при отрицательных аутоантителах к β-клеткам.

Помимо тучности, при манифестации могут наблюдаться другие клинические признаки СД2. Общим доминирующим признаком является инсулинорезистентность, и клинические особенности включают симптомы «метаболического синдрома». В дополнение к абдоминальному ожирению они включают гипертонию, дислипидемию, микроальбуминурию, гиперлипидемию и acanthosis nigricans [29] (табл. 1).

Возраст и пол

Средний возраст подростков с СД2 в различных исследованиях составляет от 13 до 14 лет [15—18], хотя имеется сообщение о диагностике СД2 у ребенка в возрасте 5 лет [30]. Однако, несмотря на характерный возраст пациентов с СД2 во время манифестации, этот показатель не очень полезен в дифференциальной диагностике между СД1 и СД2 у подростков, так как СД1 будет все еще составлять большую часть подростков с впервые диагностированным диабетом. С другой стороны, чем моложе ребенок, тем более вероятно, что у него СД1.

В имеющихся сообщениях пациенты с СД2 почти всегда находятся в пубертатном периоде (стадия 3 или выше по Таннеру), хотя некоторые исследования сообщили о препубертатных случаях. Возраст этих детей иногда удивительно молодой, потому что возраст начала полового созревания среди детей с ожирением может быть более ранним, чем среди их сверстников. Поскольку половое созревание характеризуется относительной инсулинорезистентностью, очевидно, что оно может ускорить появление манифестного СД2 у подростков с ожирением.

Девочки оказываются более восприимчивы к СД2, чем мальчики, при соотношении женщины/мужчины 1,7/1, независимо от расы. Для американских индейцев это соотношение более выражено — 4-6/1 [24]. Однако, поскольку эти соотношения основаны на исследованиях центров диабета, а не популяционного скрининга, половое несоответствие может быть следствием более высокой пропорции не диагностированных случаев среди мальчиков, вызванных более низкой частотой медицинских посещений среди юношей по

сравнению с девушками. Данные, основанные на популяционных исследованиях, будут полезны в решении этого вопроса.

Семейный анамнез и этническая принадлежность

Подростки с СД2 в общем поступают из семей, в которых родители также имеют ожирение и тенденцию к инсулинорезистентности или непосредственно клинический СД2. В представленных публикациях у 60-80% пациентов с СД2 имеется один пораженный родственник первой степени родства [24]. От 74 до 100% имеют родственников первой или второй степени родства с СД2 [6, 31]. Кроме того, здоровые сибсы пациентов с СД2, как сообщается, имели повышенный уровень С-пептида и проинсулина, оба из которых связаны с высоким риском развития СД2. А родственники первой степени родства, как оказалось при последующей оценке, имели недиагностированный диабет. Семьи с СД2 необходимо отличать от семей с МОДУ, аутосомным заболеванием, с относительно умеренной гипергликемией, но в основном без ожирениея. Важно иметь в виду, что СД2 достаточно широко распространен среди населения в целом, так что много семей, включая и детей с СД1, будут иметь родственников с СД2.

Этническая принадлежность, кажется, играет заметную роль в восприимчивости к СД2. Две трети подростков с СД2, о которых сообщается в современных публикациях, являются афроамериканцами или мексиканцами-американцами, а остальные — кавказоидами (европейцами) [24]. Таким образом, СД2 более распространен в одних этнических группах по сравнению с другими. Это те же популяции, которые имеют более высокую распространенность СД2 среди взрослых. Опубликованные отчеты указывают, что дети и подростки с СД2 имеются во всех этнических группах — афроамериканцы, выходцы из Латинской Америки, кавказоиды, японцы, аборигены в Канаде, ашкенази или сефардические евреи. Этническая принадлежность, поэтому, не является защищающим фактором в каждом конкретном случае.

Манифестация

Вообще, пациенты с СД2 чаще при манифестации имеют признаки хронической гипергликемии, в то время как пациенты с СД1 в большинстве случаев имеют более острую метаболическую декомпенсацию (табл. 2). Однако диапазон клинических проявлений СД2 у молодежи может быть достаточно широким – от умеренной бессимптомной гипергликемии до тяжелого кетоацидоза [24, 31, 32]. Приблизительно 20% подростков с СД2 имеют полиурию, полидипсию и потерю веса, то есть их жалобы соответствуют обычным клиническим признакам и СД1, и СД2. С другой стороны, у многих пациентов СД2 диагностируется при рутинном обследовании в лаборатории как часть диспансеризации либо при обследовании по поводу ожирения или отягощенной наследственности, а не в результате наличия определенных жалоб. Такой «случайный» диагноз редок при СД1. Точно так же у 25% девочек с СД2 главной жалобой при манифестации заболевания является влагалищная инфекция. В то время как проявления вульвовагинита являются типичной жалобой среди взрослых женщин с СД2 и указывают на длительно существующую глюкозурию, этот признак чрезвычайно редок при манифестации у пациентов с СД1. Пациенты с СД2 имеют обычно множество жалоб, включая тяжелые инфекции (остеомиелит и фарингит), ожирение, дизурию и энурез [5].

Диабетический кетоацидоз

Некоторые подростки, особенно афроамериканцы, у которых в конечном счете диагностируется СД2, могут иметь при манифестации диабетический кетоацидоз (ДКА), который традиционно рассматривался в качестве патогномоничного симптома СД1. В одном из исследований 42%

афроамериканцев с СД2 при манифестации имели кетонурию и 25% – ДКА [32]. Это наблюдение было также продемонстрировано среди тучных афроамериканских взрослых пациентов, которые имели при манифестации кетоз и ЛКА. но в последующем оказывалась типичная клиническая картина СД2 [33]. Механизм развития кетоза у пациентов с СД2 не ясен. Предполагается, что инсулинорезистентность в комбинации с неблагоприятным влиянием хронической гиперна секрецию и действие инсулина («глюкозотоксичность») приводит к относительному дефициту инсулина. Когда дефицит становится серьезным (из-за длительной гипергликемии с декомпенсацией или интеркуррентного заболевания), он приводит к усилению липолитических процессов и повышению уровня свободных жирных кислот, кетонемии и кетонурии, характерных для пациентов с СД1 [5]. Почему это явление больше распространено у афроамериканцев и испанских пациентов с СД2, неизвестно, хотя проведенные исследования показали, что базальная чувствительность к инсулину в этих группах ниже, чем у их сверстников-кавказоидов, что, возможно, увеличивает их чувствительность к развитию относительной инсулиновой недостаточности [34].

Гипергликемическое гиперосмолярное состояние

Гипергликемическое гиперосмолярное состояние (ГГС) является опасной для жизни чрезвычайной ситуацией и редко встречается в детском возрасте при СД1. Стандартными диагностическими критериями являются уровень глюкозы крови >33 ммоль/л (600 мг%) и осмолярности сыворотки >330 мОсм/л с умеренным ацидозом (бикарбонаты в сыворотке >15 ммоль/л) и умеренной кетонурией (<15 мг/дл) [35]. Провоцирующие факторы часто удается идентифицировать. Они включают инфекционные заболевания, медикаменты, некомплаентность, недиагностированный диабет, токсикоманию, наличие других хронических заболеваний. Первое сообщение о ГГС при СД2 в детском возрасте было описано у 11-летнего мальчика с аутизмом, морбидным ожирением, acanthosis nigricans и астмой (этническая принадлежность не была определена) [36]. Впоследствии было сообщено о семи тучных афроамериканских молодых людях (шесть – мужского пола) в возрасте 13-21 года с не диагностированным ранее СД [37]. Все они первоначально были диагностированы как больные с ДКА, но анализ результатов обследования показал, что все удовлетворяли критериям ГГС. Все семь пациентов умерли, при вскрытии у трех зарегистрировано отсутствие инсулита, что подтверждает клинический диагноз СД2.

В недавнем систематическом обзоре публикаций случаев 190 детей с СД2 за 5-летний период в Детской больнице Филадельфии, Fourtner и соавт. [37] выявили семь пациентов в возрасте 10-17 лет (пять — лица мужского пола, средний возраст при дебюте СД 13,3 лет) с развившимся ГГС при манифестации заболевания. На основании этих данных авторы приводят частоту ГГС — 3,7%. Все заболевшие молодые люди были афроамериканцами. У одного пациента развилась полиорганная недостаточность с летальным исходом, рассчитанный коэффициент смертности составил 14,3%. Оставшиеся в живых имели существенные неврологические осложнения.

В настоящее время описано 29 случаев развития ГГС у подростков, из которых 26 были афроамериканцами, и 22 случая — у взрослых мужчин. Как и у взрослых, ГСС у подростков ассоциирован с высокой смертностью (12 из этих 29 случаев, 41,4%). Причиной смерти являлись гиповолемический шок, полиорганная недостаточность, массивная легочная эмболия и др. Редкие осложнения ГГС (панкреонекроз, распространенный некроз тонкого кишечника и

Таблица 2

Клиническая манифестация СД1 и СД2 в детском возрасте			
Признак	СД1	СД2	
Полидипсия, полиурия, полифагия	Да	Да	
Усиление при острых заболеваниях	Да	Да	
Диабетический кетоацидоз	Да	Возможен	
Случайная диагностика	Не характерна	Обычна	
Возраст начала	Любой	Чаще пубертатный	
Bec	Любой	Ожирение	
Acanthosis nigricans	Редко	Обычно	
Влагалищная инфекция	Редко	Обычно	
Гипертония	Редко	Обычно	
Дислипидемия	Редко	Обычно	
Аутоантитела	Положительные	Отрицательные	

тромбоз восходящей брыжеечной артерии) также описаны среди подростков [5].

Дифференциальный диагноз

Дифференциальная диагностика СД1, СД2 и моногенных форм диабета имеет принципиальное значение, поскольку пациенты нуждаются в различных терапевтических подходах уже при манифестации и в дальнейшем — на протяжении заболевания. Кроме того, верификация диагноза необходима при определении прогноза течения диабета, развития осложнений и риска развития СД для ближайших родственников и потомства при медико-генетическом консультировании.

Необходимость проведения дифференциального диагноза между СД1 и СД2 в настоящее время возникла по следующим причинам [29]:

- С увеличивающейся распространенностью ожирения у детей до 15—25% недавно диагностированных пациентов с СД1 могут иметь ожирение. Это также верно в отношении моногенных форм диабета.
- Около 1/3 детей с СД2 имеют кетонурию или кетоацидоз в момент установления диагноза.
- СД2 широко распространен среди взрослого населения, поэтому у больных диабетом 1 типа может быть случайный положительный семейный анамнез [38], примерно в 15% случаев или больше (среди популяционных меньшинств), что уменьшает специфичность данного признака.
- Наблюдается значительное наложение в уровне инсулина или С-пептида между СД1 и СД2 и МОDУ в дебюте и на первом году заболевания. Это наложение происходит из-за фазы ремиссии аутоиммунного диабета 1 типа «медовый месяц» и степени глюкотоксичности и липотоксичности, нарушающих секрецию инсулина во время острой манифестации и при СД1, и при СД2. С другой стороны, инсулинорезистентность при ожирении повышает остаточную секрецию С-пептида у подростков с СД1 и ожирением. Вследствие этого измерение гормонов может оказаться недостаточно информативным в острой фазе. (Исследование С-пептида для диагностики СД2 может быть более полезным у пациентов, классифицированных как СД1, при нестабильном течении диабета и повышенном уровне данного гормона через 12—14 мес. от манифестации).

Клинические особенности, которые могут помочь отличить типы СД, суммированы [39] в табл. 3. Главные пункты: постепенное начало, отсутствие аутоантител и ожирение. Другие различия — умеренные полиурия и полидипсия и небольшая потеря веса или ее отсутствие при манифестации. Аутоантитела, характерные для СД1 (к глютаматдекарбоксилазе, к островковым клеткам), обычно отрицательны, но могут быть положительными в 3–30%. 85% и больше детей с СД2 имеют избыток веса или ожирение при диагно-

Таблица 3

Особенности дифференцирования СД2 от СД1 и МОDY (адапт. [40] (27)			
Характеристика	СД1	СД2	MODY
Относительная частота	98%	Меньше 10%	1–3%
Генетика	Полигенное	Полигенное	Моногенное
Острота манифестации	Острая	Различная. От скрытой до тяжелой	Различная
Возраст	Все детство	Обычно пубертный или позже	Часто постпубертатный,
			кроме HCД GCK
Ожирение	Тот же риск, что в популяции	Обычно	Тот же риск, что в популяции
Кетоз	Обычно	Редко	Редко, кроме НСД
Антитела	Полож. ICA, GAD	Отрицат.	Отрицат.
С-пептид	Нет С-пептида после ремиссии	С-пептид положительный	
Ассоциация с аутоиммунными	Да	Нет	Нет
заболеваниями			
Родитель с диабетом	2–4%	40–80%	90%

стике. Acanthosis nigricans является признаком инсулинорезистентности и наблюдается у 90% пациентов. В комплексе с другими признаками полезным тестом в дифференциации между СД1 и СД2 может быть измерение уровня инсулина или С-пептида натощак. При СД2 уровень С-пептида обычно выше нормального или находится в верхней половине нормального диапазона, отражающего инсулинорезистентность, хотя он ниже, чем ожидаемый для данной степени гипергликемии в результате сосуществующей недостаточности секреции β-клеток. Считается, что у пациентов, имеющих СД1, редко можно обнаружить нормальный уровень С-пептида в период вне «медового месяца», то есть через 3 года после диагноза. У детей с избыточной массой тела или с ожирением и клинической картиной СД1 (потеря веса, кетоз/кетоацидоз), у некоторых из которых может быть СД2, необходимо проводить тестирование специфичных для СД1 аутоантител и исследование уровня С-пептида.

Дифференциация СД2 и MODY у детей: роль генетического тестирования

Существует немного сообщений, которые сравнивают распространенность СД2 с диабетом зрелого возраста у молодых (МОДУ). Во многих странах МОДУ редко обнаруживается и может быть принят за СД2, особенно, когда пациенты с МОДУ имеют избыток веса или ожирение. В одном из опубликованных исследований в британской популяции распространенность МОДУ у детей была подобна этому показателю при СД2. Поперечный обзор всех детей с «диабетом не 1 типа» в течение 2000 г. продемонстрировал минимальную распространенность 0,21 на 100 000 для диабета 2 типа и 0,17 на 100 000 — МОДУ для возраста до 16 лет [40]. Все пациенты с МОДУ имели подтвержденный молекулярный диагноз. В целом был сделан вывод, что, веропроисходит значительная недооценка заболевания, поскольку истинная распространенность, изученная на основе генетического тестирования, к настоящему времени не была пока выполнена ни в одной стране.

В оригинальном определении диагноз MODY устанавливается у больных диабетом моложе 25 лет с аутосомнодоминантным наследованием и при манифестации без кетоза. Однако с появлением СД2 у детей это определение стало менее полезным, так как дети с СД2 также соответствуют этим критериям, поскольку они обычно имеют семейный анамнез по диабету и в 45–80% имеют одного из родителей с СД [6]. По мнению Gill-Carey О. и Hattersley А., лучше при дифференцировании МОDY от СД2 рассматривать такие факторы, как отсутствие тучности при условии низкой распространенности ожирения в популяции, отсутствие Асапthosis nigricans, и когда только один родитель, а не оба, имеет СД (табл. 3). Однако ни один из этих диагностических критериев не является абсолютным. Недавно опубликовано наблюдение развития СД

без кетоза у 13-летнего мальчика с ожирением, артериальной гипертензией, инсулинорезистентностью и наличием случаев СД в трех поколениях [41]. Обнаруженная мутация гена ядерного фактора-1 гепатоцитов позволила верифицировать MODY 3 у больного, несмотря на наличие инсулинорезистентности. При большой продолжительности диабета у детей с отягощенной наследственностью должны быть расширены показания для того, чтобы проверить на наличие подтипов МОДУ. Это особенно важно при мутации в печеночном ядерном факторе (HNF)-1 или (HNF)-4, поскольку обнаружение данных мутаций будет означать, что эти пациенты чувствительны к сульфонилмочевинным препаратам и достигнут превосходного контроля при употреблении очень низких доз препарата [42]. Если диагноз не будет верифицирован, эти пациенты будут неправильно диагностированы как СД1 и получать лечение инсулином, или как СД2 – и получать лечение метформином и иметь в результате более плохой метаболический контроль. Генетическое тестирование должно зависеть от фенотипа пациента [42], однако это является темой для отдельного анализа.

Заключение

Появление СД2 в детском и подростковом возрасте стало реальностью. Его клинические проявления могут оказаться схожими с таковыми при СД1 и МОДУ, что требует пристального внимания эндокринологов при верификации диагноза. Увеличение распространенности ожирения в популяции приводит к тому, что все больше случаев СД1 и МОДУ будут иметь ожирение. Все случаи манифестации диабета у больных с ожирением требуют дополнительного исследования иммунологического статуса и инсулиновой секреции. При манифестации диабета с кетозом исследование функции β-клеток необходимо повторить после компенсации диабета (снятия «глюкозотоксичности»). При наличии отягощенного семейного анамнеза (СД в 3 поколениях) необходимо молекулярногенетическое тестирование на МОДУ. Учитывая мягкую, асимптоматическую манифестацию СД2 во многих случаях, необходимо проводить активное выявление СД в группах повышенного риска, к коим в первую очередь относятся дети и подростки с ожирением и с отягощенной по СД2 наследственностью, а также лица с проявлением инсулинорезистентности (Acanthosis nigricans, поликистоз яичников у девушек).

Потребуются еще значительные клинические, лабораторные и молекулярно-генетические исследования, чтобы выработать надежные дифференциально-диагностические признаки верификации СД2 в детском и подростковом возрасте.

Литература

- 1. Zimmet P., Alberti K.G., Shaw J. Global and societal implications of the diabetes epidemic //Nature, 2001, 414, P. 782-787.
- Mokdad A.H., Ford E.S., Bowman E.A. et al. Diabetes trends in U.S.:1990-1998. //Diabetes Care, 2000, 23, P. 1278-1283.
- 3. Сунцов Ю.И., Дедов И.И., Шестакова М.В. Скрининг осложнений сахарного диабета как метод оценки качества лечебной помощи больным. М., 2008, 80 с.
- 4. Dunstan D.W., Zimmet P.Z., Welborn T.A. et al. The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study //Diabetes Care, 2002, 25, P. 829-834.
- Pinhas-Hamiel O., Zeitler P. Clinical presentacion and treatment of type 2 diabetes in children. Pediatric Diabetes, 2007, 8 (Suppl.9), P.16-27
- American Diabetes Association. Type 2 diabetes in children end adolescents //Diabetes Care, 2000, 23, P. 381-389.
- Mohan V., Jaydip R. Type 2 diabetes in Asian Indian youth. Pediatric Diabetes, 2007, 8 (Suppl.9), P. 28-34.
- Bloomgarden Z.T. Type 2 diabetes in the young: the evolving epidemic //Diabetes Care, 2004,27, P. 998–1010.
- 9. Дедов И.И., Ремизов О.В., Петеркова В.А. Сахарный диабет 2 типа
- , детей и подростков //Сахарный диабет, 2001, 4, С. 26–32. 10. Ehtisham S., Barrett T.G. The emergence of type 2 diabetes in childhood. Ann.Clin.Biochem., 2004, 41, P. 10-16.
- 11. Zachrisson I., Tibell C., Bang P., Ortqvist E. Prevalebce of type 2 diabetes among known cases of diabetes aged 0-18 years in Sweden //Diabetologia, 46, A25.
- 12. Петеркова В.А. Глюкофаж в лечении сахарного диабета типа 2 детей и подростков //Фарматека, 2008, 17(171), С. 61–63.
- 13. Петеркова В.А., Кураева Т.Л., Ремизов О.В., Щербачева Л.Н. Изучение факторов риска, разработка мет одов диагностики и лечения сахарного диабета 2 типа у детей и подростков московской популяции. Методические рекомендации (№ 45). М. 2004, 12 с.
- 14. Петеркова В.А., Кураева Т.Л., Ремизов О.В. и др. Сахарный диабет 2 типа у детей и подростков. Методические рекомендации (№ 41). M., 2005, 14 c.
- 15. Sayeed M.A., Hunsain M.Z., Banu A. et al. Prevalence of diabetes in a suburban population of Bangladesh //Diabetes Res.Clin.Pract., 1997, 34. P. 149-155.
- 16. Service F.J., Rizza R.A., Zimmerman B.R. et al. The classification of diabetes by clinical and C-peptide criteria. A prospective population based study //Diabetes Care, 1997, 20, P. 198-201.
- 17. Rowley M.J., Mackay I.R., Chen Q-Y et al. Antibodies to glutamic acid decarboxylase discriminate major types of diabetes mellitus //Diabetes, 1992, 41, P. 548-551.
- 18. Turner R., Stratton I., Horton V. et al. For the UK Prospective Diabetes Study (UKPDS) Group. UKPDS 25: autoantibodies to islet cell cytoplasma and glutamic acid decarboxilase for prediction of insulin requirement in type 2 diabetes //Lancet, 1997, 350, P. 1288-1293.
- 19. Landin-Olsson M. Latent autoimmune diabetes in adults //Ann.N.Y.Acad.Sci., 2002, 958, P. 112–116.
- 20. Brooks-Worrell B.M., Greenbaum C.J., Palmer J.P. et al. Autoimmunity to islet proteins in children diagnosed with new-onset diabetes //J. Clin. Endocr. Metab., 2004, 89, P. 2222–2227.
- 21. Hathout E.H., Thomas W., El-shahawy M. et al. Diabetic autoimmune markers in children and adolescents with type 2 diabetes //Pediatrics, 2001, 107, P. 102.
- 22. Umpaichitra V., Banerji M.A., Castells S. A. Autoantibodies in children with type 2 diabetes mellitus //J. Pediatr. Endicrinol. Metab., 2002, 15, P. 525-530.

- 23. Miller J., Silverstein J.H., Rosenbloom A.L. Type 2 diabetes in ahd adolescent. In: Lifshits F., Ed. Pediatric Endocrinology. New York: Marcel Dekker, 2007, P. 169-188.
- 24. Fagot-Campanga A., Pettitt D.J., Engelgau M.M. et al. Type 2 diabetes among North American children and adolescents: an epidemiological review and public health perspective //J. Pediatr., 2000, 136, P. 664-672.
- 25. Pinhas-Hamiel O., Zeitler P. The global spread of type 2 diabetes in children and adolescents //J. Pediatr, 2005, 146, P. 693-700.
- 26. Reinehr T. Clinical presentation of type 2 diabetes mellitus in children and adolescents. Int J Obes (Lond), 2005, 29 (Sappl. 2), P. S105-S110.
- 27. Wilkin T.J. Diabetes: 1 and 2, or one and the same? Progress with the accelerator hypothesis //Pediatric Diabetes, 2008, (Part II), P.23-32.
- 28. Reinehr T., Schober E., Wiegand S. Et al. Beta-cell autoantibodies in children with type 2 diabetes mellitus: subgroup or misclassification? //Arch Dis Child, 2006, 91, P. 473-477.
- 29. ISPAD Clinical Practice Consensus Guidelines 2006-2007. Type 2 diabetes mellitus in the child and adolescent //Pediatric Diabetes, 2008, 9. P. 512-526.
- 30. Glaser N.S., Jones K.L. Noninsulin-dependent diabetes mellitus in Mexican-American children // West J. Med., 1998, 168, P. 11.
- 31. Дубинина И.А., Кураева Т.Л., Петеркова В.А. Характеристика детей и подростков с сахарным диабетом, не имеющих потребности в инсулине //Материалы Всероссийской конференции «Задачи детской эндокринологии в реализации национального проекта «Здоровье». Уфа. 2008, С. 34-36.
- 32. Pinhas-Hamiel O., Dolan L.M., Zeitler P. Diabetic ketoacidosis among obese African-American adolescents with NIDDM //Diabetes Care, 1997, 20, P. 484-486,
- 33. Arslanian S., Suprasongsin C. Differences in the in vivo insulin secretion and sensitivity of healthy black versus white adolescents //J. Pediatr., 1996, 129, P. 440-443.
- 34. Umpierrez G.E., Casls M.M., Gebhart S.P. et al. Diabetic ketoacidosis in obese African Americans //Diabetes, 1995, 44, P. 790–795.
- 35. American Diabetes Association. Hyperglycemic crises in patients with diabetes mellitus //Diabetes Care, 2001, 24, P. 1988-1996.
- 36. Peetigrew D.C. Index of suspicion. Case 2. Diagnosis: hyperglycemic nonketotic hypertonicity (HNKH) //Pediatr Rev, 2001, 22, P. 169 - 173
- 37. Morales A.E., Rosenbloom A.L. Death caused by hyperglycemic hyperosmolar state at the onset of type 2 diabetes //J. Pediatr, 2004, 144, P. 270-273.
- 38. Дедов И.И., Кураева Т.Л., Петеркова В.А. и др. Медико-генетическое консультирование в семьях больных сахарным диабетом 1 типа. Методические рекомендации МЗ РФ. М., 2000, 35 с.
- 39. Gill-Carey O., Hattersley A.T. Genetics and type 2 diabetes in youth //Pediatric Diabetes, 2007, 8 (Suppl.9), P. 42–47.
- 40. Ehtisham S., Hattersley A.T., Dunger D.B., Barrett T.G. First UK survey of paediatric type 2 diabetes and MODY //Arch. Dis. Child., 2004, 89, P. 526-529.
- 41. Weintrob N., Stern E., Klipper-Aurbach Y. et al. Childhood obesity complicating the differential diagnosis of maturity-onset diabetes of the young and type 2 diabetes //Pediatric Diabetes, 2008, 9, P. 60–64.
- 42. Hattersley A.T., Bruining J., Shield J. et al. ISPAD Clinical Practice Consensus Guidelines 2006-2007. The diagnosis and management of monogenic diabetes in children // Pediatr. Diabetes, 2006, 7, P. 352-360.

Кураева Тамара Леонидовна

д.м.н., профессор, заведующая отделением сахарного диабета Института детской эндокринологии ФГУ Эндокринологический научный центр, Москва

Дубинина Ирина Александровна

аспирант ФГУП ГНЦ РФ «ГосНИИгенетика», Москва

E-mail: dubininairina@list.ru