МАРКЕРЫ ВОСПАЛЕНИЯ НИЗКОЙ ИНТЕНСИВНОСТИ И УРОВНИ ЦИТОКИНОВ В СЫВОРОТКЕ КРОВИ У БОЛЬНЫХ САХАРНЫМ ДИАБЕТОМ 1 ТИПА: АССОЦИАЦИИ СО ВРЕМЕНЕМ В ДИАПАЗОНАХ И ВАРИАБЕЛЬНОСТЬЮ УРОВНЯ ГЛЮКОЗЫ

© К.Р. Мавлянова, Ю.Ф. Семёнова, Н.Б. Орлов, В.В. Климонтов*

Научно-исследовательский институт клинической и экспериментальной лимфологии — филиал ФГБНУ Федеральный исследовательский центр «Институт цитологии и генетики Сибирского отделения Российской академии наук», г. Новосибирск

ОБОСНОВАНИЕ. Повышенная вариабельность уровня глюкозы (ВГ) признана фактором риска сосудистых осложнений при диабете. Предполагают, что неблагоприятный эффект ВГ на сосуды может быть реализован через активацию воспалительных сигнальных путей.

ЦЕЛЬ. Определить ассоциации маркеров воспаления низкой интенсивности и цитокинов в сыворотке крови с временем в диапазонах и параметрами ВГ, установленными по данным непрерывного мониторинга уровня глюкозы (НМГ), у больных сахарным диабетом 1 типа (СД1).

МАТЕРИАЛЫ И МЕТОДЫ. У 470 взрослых, больных СД1, исследована концентрация С-реактивного белка высокочувствительным методом (вчСРБ), фибриногена, рассчитано нейтрофильно-лимфоцитарное соотношение (НЛС), индекс системного иммунного воспаления (ИСИВ). В выборке из 130 больных и у 20 здоровых лиц (контроль) исследованы концентрации интерлейкинов (IL-1β, IL-4, IL-6, sIL-6Rα, IL-19, IL-20, IL-22, IL-26, IL-27, IL-28A, IL-29, IL-32, IL-34, IL-35) в сыворотке крови методом мультиплексного анализа. По данным НМГ, установлено время в диапазонах и параметры ВГ: коэффициент вариабельности (CV), средняя амплитуда колебаний гликемии (МАGE), среднечасовая скорость изменений уровня глюкозы (МАG).

РЕЗУЛЬТАТЫ. У больных с временем в целевом диапазоне (TIR) <70% зафиксированы более высокие концентрации вч-СРБ и фибриногена, более высокие значения ИСИВ, а также тенденция к более высоким значениям НЛС по сравнению с пациентами с TIR≥70% (p=0,018, p=0,026, p=0,037, p=0,101 соответственно). Больные СД1 в сравнении с контролем демонстрировали повышенные концентрации IL-1β (p<0,0001), IL-6 (p<0,0001), снижение уровня IL-4 (p=0,002), тенденцию к снижению IL-22, IL-29 (p=0,1). У пациентов с TIR>70% отмечался более высокий уровень IL-4 (p=0,02), а также меньшие концентрации IL-1β (p=0,0003) и IL-6 (p=0,007), чем у больных с TIR≤70%. В многофакторном пошаговом регрессионном анализе с включением клинических данных и параметров НМГ в качестве независимых переменных индекс массы тела был положительным предиктором уровня вчСРБ и фибриногена, значения TIR были отрицательно ассоциированы с уровнем IL-20 и IL-34, время в диапазоне выше целевого было положительно ассоциировано с IL-1β, МАGE показала положительную ассоциацию с ИСИВ, IL-26 и IL28A, в то время как МАG была положительно ассоциирована с IL-29.

ЗАКЛЮЧЕНИЕ. Больные СД1 с нецелевыми значениями TIR (<70%) имеют более высокие уровни маркеров воспаления низкой интенсивности и сывороточных провоспалительных цитокинов, чем пациенты с TIR>70%. Как гипергликемия, так и повышенная ВГ, ассоциированы с выраженностью воспаления низкой интенсивности при СД1.

КЛЮЧЕВЫЕ СЛОВА: сахарный диабет; гипергликемия; время в диапазонах; вариабельность гликемии; непрерывный мониторинг глюкозы; воспаление; цитокин.

MARKERS OF CHRONIC LOW-GRADE INFLAMMATION AND SERUM CYTOKINE LEVELS IN PATIENTS WITH TYPE 1 DIABETES: ASSOCIATIONS WITH TIME IN RANGES AND GLUCOSE VARIABILITY

© Kamilla R. Mavlianova, Julia F. Semenova, Nikolay B. Orlov, Vadim V. Klimontov*

Research Institute of Clinical and Experimental Lymphology – branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

BACKGROUND: Increased glucose variability is recognized as a risk factor for vascular diabetic complications. It is assumed that deteriorating effect of GV on blood vessels can be realized through the activation of inflammatory signaling pathways. **AIM:** to determine associations of low-grade inflammation markers and serum cytokines with time in ranges and GV parameters derived from continuous glucose monitoring (CGM) in patients with type 1 diabetes (T1D).

MATERIALS AND METHODS: In 470 adult patients with T1D, high-sensitivity C-reactive protein (hsCRP) and fibrinogen was measured, neutrophil-lymphocyte ratio (NLR) and the Systemic Immune-inflammation Index (SII) were calculated. In a sample of 130 patients and 20 healthy individuals (control), serum concentrations of interleukins (IL-1β, IL-4, IL-6, sIL-6Rα, IL-19, IL-20, IL-22, IL-26, IL-27, IL-28A, IL-29, IL-34, IL-35) were assessed by multiplex analysis. Time in the ranges and GV

parameters: Coefficient of Variability (CV), Mean Amplitude of Glycemic Excursions (MAGE), and Mean Absolute Glucose rate of changes (MAG) were derived from CGM data.

RESULTS: Patients with Time In Range (TIR) <70% had higher concentrations of hs-CRP and fibrinogen, higher SII values, and demonstrated a trend toward higher TIR compared with those with TIR \geq 70% (p=0.018, p=0.026, p=0.037, p=0.101, respectively). Patients with T1D, when compared to control, demonstrated increased concentrations of IL-1β (p<0.0001), IL-6 (p<0.0001), decreased levels of IL-4 (p=0.002), and a tendency to decrease IL-22 and IL-29 (p=0.1). Patients with TIR>70% had higher levels of IL-4 (p=0.02) as well as lower concentrations of IL-1β (p=0.0003) and IL-6 (p=0.007) than patients with TIR \leq 70%. In a multivariate stepwise regression analysis including clinical data and CGM parameters as independent variables, body mass index was positive predictor of hsCRP and fibrinogen levels, TIR was negatively associated with IL-20 and IL-34, time above range was associated positively with IL-1β, MAGE showed positive association with SII, IL-26 and IL-28A, while MAG was positively associated with IL-29.

CONCLUSION: T1D patients with non-target TIR (<70%) have higher levels of low-intensity inflammatory markers and serum pro-inflammatory cytokines than patients with TIR>70%. Both hyperglycemia and increased GV are associated with intensity of low-grade inflammation in T1D.

KEYWORDS: diabetes; hyperglycemia; time in range; glucose variability; continuous glucose monitoring; inflammation; cytokine.

ОБОСНОВАНИЕ

Согласно оценкам Международной федерации диабета, не менее 8,75 млн человек в мире живут с сахарным диабетом 1 типа (СД1), из них 5,56 млн составляют люди молодого и трудоспособного возраста [1]. По данным Федерального регистра СД¹, в России зарегистрировано более 290 тысяч пациентов с СД1. Средняя фактическая продолжительность жизни при СД1 в России составляет около 53 лет, основными причинами преждевременной смерти являются сердечно-сосудистые осложнения [2].

В исследовании по контролю и осложнениям диабета (DCCT: the Diabetes Control and Complications Trial) и в его последующей наблюдательной фазе (EDIC: the **Epidemiology of Diabetes Interventions and Complications** study) доказана роль гипергликемии в развитии сосудистых осложнений СД1 [3]. В последние годы установлено, что не только гипергликемия, но и повышенная вариабельность уровня глюкозы (ВГ) способствует развитию диабетических осложнений [4, 5]. В частности, показана роль долгосрочной ВГ, оцениваемой по изменчивости уровня гликированного гемоглобина (HbA_{1c}), в развитии сердечно-сосудистых осложнений [6]. Повышенная ВГ активирует воспалительные реакции, процессы свободно-радикального окисления, запускает дисфункцию эндотелия и клеток крови, нарушения ангиогенеза, процессы фиброгенеза в почках [7, 8].

Более 15 лет назад А. El-Osta и соавт. было показано, что транзиторное нефизиологическое повышение уровня глюкозы индуцирует эпигенетические модификации в промоторе гена ядерного фактора NK-kB, связанного с воспалительным ответом. Это ведет к сохранению гиперактивности фактора и после нормализации уровня глюкозы [9]. В исследованиях А. Ceriello и соавт. установлено, что интермиттирующая гипергликемия вызывает более выраженный провоспалительный ответ в эндотелиальных клетках человека, чем стабильно повышенный уровень глюкозы; исследования с использованием клэмп-технологий показали роль гипогликемии как триггера воспалительных реакций [10, 11]. Эти данные позволяют предполагать, что высокая ВГ с эпизодами гипергликемии и гипогликемии способствует развитию

воспаления при СД. В свою очередь, хроническое субклиническое воспаление, или воспаление низкой интенсивности, рассматривается как важный компонент сердечно-сосудистого континуума [12]. У больных СД1 маркеры воспаления ассоциированы с микрососудистыми и макрососудистыми осложнениями [13].

Появление метода непрерывного мониторинга уровня глюкозы (НМГ) значительно расширило возможности оценки ВГ у больных СД. Это, в свою очередь, способствовало формированию представлений о краткосрочной (суточной) ВГ как факторе, значимом с клинической и патогенетической точки зрения [14]. Убольных СД1 показаны ассоциации параметров ВГ, рассчитанных по данным НМГ, с уровнем высокочувствительного С-реактивного белка (вчСРБ) [15], некоторых провоспалительных цитокинов [16, 17], биомаркерами тромбоза [18], параметрами липидного профиля [19]. Однако многие клинически и патофизиологически важные аспекты эффекта ВГ пока еще недостаточно ясны. В частности требует уточнения значимость различных характеристик ВГ в развитии воспаления и других механизмов патогенеза. Это послужило основанием для проведения нашего исследования.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Определить ассоциации маркеров воспаления низкой интенсивности и цитокинов в сыворотке крови со временем в диапазонах и параметрами ВГ, установленными по данным НМГ, у больных СД1.

МАТЕРИАЛЫ И МЕТОДЫ

Место и время проведения исследования

Набор участников исследования проводили в клинике НИИКЭЛ — филиал ИЦиГ СО РАН с июня 2020 по май 2023 г.

Изучаемая популяция

Участниками исследования были пациенты с СД1 (18–65 лет; основная группа) и лица с нормальной толерантностью к глюкозе (контроль). В исследование не включали лиц с сопутствующими иммуновоспалительными заболеваниями, инфекциями, перенесенными в течение последних трех месяцев, терминальной

¹ Доступен по ссылке: https://sd.diaregistry.ru/. Дата обращения: 08.04.2024.

стадией хронической болезни почек (ХБП). Полный список критериев включения и невключения в исследование приведен в нашей предыдущей работе [20].

Способ формирования выборки из изучаемой популяции

В исследование включались пациенты с СД1, получавшие плановую высокотехнологичную или специализированную медицинскую помощь. Контрольную группу формировали из числа сотрудников Института и их родственников.

Дизайн исследования

Проведено одноцентровое наблюдательное одномоментное сравнительное исследование.

Скринировано 555 больных СД1 и 35 лиц без СД, соответствовавших критериям включения. После оценки критериев исключения в исследование включено 470 пациентов с СД1 и 27 лиц с нормальной толерантностью к глюкозе.

На первом этапе больным СД1 проводили клиническое обследование, НМГ в режиме реального времени с анализом времени в диапазонах и индексов ВГ, а также определение маркеров воспаления. При анализе учитывали время в целевом диапазоне (Time In Range, TIR: 3,9–10 ммоль/л), время в диапазоне выше целевого (Time Above Range, TAR:>10 ммоль/л), время в диапазоне ниже целевого (Time Below Range, TBR:<3,9 ммоль/л) [21]. Для анализа ВГ рассчитывали коэффициент вариабельности (Coefficient of Variation, CV), среднюю амплитуду колебаний гликемии (Mean Amplitude of Glycemic Excursions, MAGE) и скорость изменений уровня глюкозы (Mean Absolute Glucose rate of change, MAG) [14]. Для оценки выраженности воспаления низкой интенсивности определяли концентрацию вчСРБ в сыворотке крови, фибриногена в плазме крови, рассчитывали нейтрофильно-лимфоцитарное соотношение (НЛС) и индекс системного иммунного воспаления (ИСИВ) [22].

На втором этапе исследования из 470 пациентов, включенных в первый этап, случайным образом была сформирована выборка из 130 больных для проведения исследования концентраций цитокинов в сыворотке крови. Панель цитокинов включала: интерлейкин-1 бета (IL-1β), интерлейкин-4 (IL-4), интерлейкин-6 (IL-6), субъединицу растворимого рецептора интерлейкина-6 альфа (sIL-6Rα), интерлейкин-19 (IL-19), интерлейкин-20 (IL-20), интерлейкин-22 (IL-22), интерлейкин-26 (IL-26), интерлейкин-27 (IL-27), интерлейкин-28A (IL-28A), интерлейкин-29 (IL-29), интерлейкин-32 (IL-31), интерлейкин-34 (IL-34), интерлейкин-35 (IL-35). Результаты сравнивали с таковыми в контрольной группе.

На заключительном этапе проводили сопоставление уровней маркеров воспаления и цитокинов с параметрами НМГ.

Методы

Уровень гликированного гемоглобина A_{1c} (Hb A_{1c}) и биохимические показатели сыворотки крови, в том числе вчСРБ, определяли на анализаторе AU480 (Beckman Coulter, США). Гематологические показатели исследовали на анализаторе BC-5300 (Midray Medical International Limited, Китай). НЛС рассчитывали путем

деления абсолютного числа нейтрофилов к абсолютному числу лимфоцитов. ИСИВ определяли как произведение количества тромбоцитов и абсолютного числа нейтрофилов, разделенное на абсолютное число лимфоцитов [22]. Концентрацию фибриногена в плазме крови измеряли на автоматическом анализаторе гемостаза ACL Elite Pro (Instrumentation Laboratory, США).

Концентрации IL-1 β , IL-4, IL-6, sIL-6R α , IL-19, IL-20, IL-22, IL-26, IL-27, IL-28A, IL-29, IL-32, IL-34, IL-35 в сыворотке крови определяли методом мультиплексного анализа цитокинов человека Bio-Plex Pro™ (Bio-Rad Laboratories, США). Мультиплексный анализ выполняли в соответствии с инструкциями производителя с помощью программного обеспечения Bio-Plex Manager 4.0.

Для НМГ использовали системы ММТ-722 и ММТ-754 (Medtronic, США). Калибровку систем осуществляли не менее четырех раз в день с помощью глюкометра One Touch Verio Pro+. Длительность НМГ составляла от трех до девяти дней (медиана — 6 дней). Расчет времени в диапазонах и параметров ВГ проводили с помощью программы экспертного анализа данных НМГ СGMEX².

Этическая экспертиза

Исследование одобрено Этическим комитетом НИИКЭЛ — филиал ИЦиГ СО РАН (протокол №158 от 01.06.2020). Пациенты включались в исследование после подписания информированного согласия.

Статистический анализ

Поскольку распределение большинства параметров отличалось от нормального (проверка по критерию Колмогорова-Смирнова), применяли непараметрические методы. Количественные признаки описаны как медианы, 25-е и 75-е процентили. Достоверность межгрупповых различий оценивали по критерию Манна–Уитни. Для анализа ассоциаций применяли ранговый корреляционный анализ, многофакторный линейный регрессионный анализ. Статобработка проведена с помощью STATISTICA 10 (StatSoft Inc, 2011, США).

РЕЗУЛЬТАТЫ

Характеристика участников исследования

В исследование включено 174 мужчины и 296 женщин с СД1 в возрасте от 18 до 65 лет (медиана — 36 лет). Терапию в режиме многократных инъекций инсулина (МИИ) получали 328 человек, в режиме постоянной подкожной инфузии инсулина (ППИИ) — 142. При обследовании диагностированы: диабетическая ретинопатия (n=263), ХБП (n=299), полинейропатия (n=348), артериальная гипертензия (n=179), ишемическая болезнь сердца (n=25), хроническая сердечная недостаточность (ХСН) (n=79). Нормальную массу тела имели 276 человек, избыточную — 121, ожирение — 73.

Подгруппа пациентов с СД1, у которых были исследованы цитокины, включала 55 мужчин и 75 женщин. Инсулинотерапию в режиме МИИ получали 82 человека, в режиме ППИИ — 48. Спектр осложнений и ассоцииро-

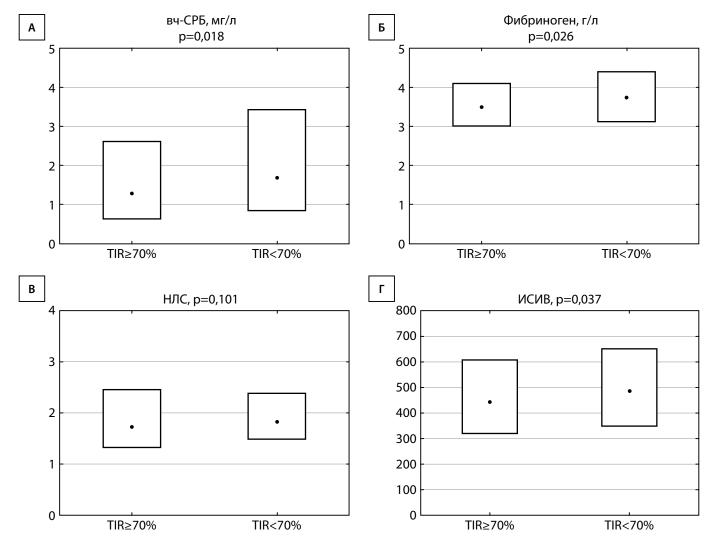
² Козинец Р.М., Климонтов В.В., Бериков В.Б., Семенова Ю.Ф. Программа экспертного анализа данных непрерывного мониторинга глюкозы (CGMEX). Свидетельство о регистрации программы для ЭВМ RU 2021616872 от 16.04.2021 г.

ванных состояний включал диабетическую ретинопатию (n=79), XБП (n=71), полинейропатию (n=126), артериальную гипертензию (n=39), ишемическую болезнь сердца (n=7), XСН (n=17). Нормальная масса тела была у 75 пациентов, избыточная — у 25, ожирение — у 30. Клинико-лабораторная характеристика пациентов представлена в табл. 1.

В контрольную группу вошли 27 человек с нормальной толерантностью к глюкозе, 12 мужчин и 15 женщин, от 22 до 57 лет (медиана — 32 года).

Маркеры воспаления

Значения маркеров воспаления в двух выборках больных СД1 приведены в табл. 1. Между уровнем вчСРБ и фибриногена прослеживалась положительная корреляция средней силы (r=0,52, p<0,0001). Оба маркера слабо коррелировали с расчетными индексами воспаления: НЛС (r=0,16, p=0,0005 и r=0,23, p<0,0001 соответственно)


и ИСИВ (r=0,15, p=0,001 и r=0,25, p<0,0001). Уровни вчСРБ и фибриногена показали слабые положительные корреляции с возрастом (r=0,17, p=0,0002 и r=0,16, p=0,0005), длительностью СД (r=0,11, p=0,018 и r=0,15, p=0,001), индексом массы тела (ИМТ; r=0,38, p<0,0001 и r=0,33, p<0,0001), окружностью талии (ОТ; r=0,37, p<0,0001 и r=0,36, p<0,0001), уровнем триглицеридов (r=0,20, p<0,0001 и r=0,27, p<0,0001) и соотношением альбумин/ креатинин мочи (r=0,11, p=0,018 и r=0,17, p=0,0002). Индексы воспаления с этими параметрами не коррелировали. Пациенты с ИМТ \geq 25 кг/м², по сравнению с больными с ИМТ<25 кг/м², имели более высокий уровень вчСРБ (2,12; 1,11–4,22 и 1,08; 0,52–2,05 мг/л, p<0,0001) и фибриногена (4,0; 3,3–4,6 и 3,4; 2,9–4,0 г/л, p<0,0001).

У больных с TIR<70% зафиксированы более высокие концентрации вчСРБ и фибриногена, более высокие значения ИСИВ, а также тенденция к более высоким значениям НЛС по сравнению с пациентами с TIR≥70%

Таблица 1. Клинико-лабораторная характеристика пациентов с сахарным диабетом 1 типа, включенных в исследование

Параметр	Выборка 1 (n = 470)	Выборка 2 (n = 130)
Возраст, лет	36 [28; 48]	33 [24; 43]
Длительность СД, лет	16 [10; 25]	15 [10; 23]
Суточная доза инсулина, ЕД/кг	47 [35; 60]	49 [35; 60]
ИМТ, кг/м ²	24 [21; 27]	23 [20; 27]
ОТ/ОБ	0,83 [0,78; 0,91]	0,82 [0,76; 0,91]
TIR, %	72 [58; 84]	71 [57; 88]
TAR, %	20 [11; 28]	17 [7,4; 25]
TBR, %	0,6 [0; 2,1]	1,2 [0,1; 3,2]
CV, %	30 [27; 34]	34 [27; 38]
MAGE, ммоль/л	5,1 [4,1; 6,2]	5,1 [3,9; 6,2]
МАG, ммоль/л/час	2,0 [1,6; 2,4]	2,0 [1,6; 2,6]
HbA _{1c} , %	8,1 [7,1; 9,2]	7,9 [6,8; 9,6]
Общий холестерин, ммоль/л	5,0 [4,2; 5,9]	5,1 [4,3; 6,1]
Триглицериды, ммоль/л	1,0 [0,7; 1,4]	0,93 [0,71; 1,3]
Мочевая кислота, мкмоль/л	246 [202; 302]	241 [191; 299]
рСКФ (СКD-EPI, 2012), мл/мин/1,73 м²	88 [74; 100]	94 [82; 105]
Альбумин/креатинин мочи, мг/ммоль	0,5 [0,3; 1,2]	0,5 [0,3; 1,1]
Эритроциты, ×10 ¹² /л	4,6 [4,2; 5,0]	4,7 [4,4; 5,1]
Гемоглобин, г/л	135 [124; 148]	139 [125; 150]
Лейкоциты, ×109/л	5,9 [4,9; 7,1]	5,5 [4,8; 6,9]
Тромбоциты, ×10 ⁹ /л	264 [221; 304]	260 [220; 294]
НЛС	1,8 [1,3; 2,4]	1,7 [1,3; 2,3]
ИСИВ	470 [327; 642]	445 [319; 607]
ВчСРБ, мг/л	1,6 [0,8; 3,4]	1,3 [0,73; 2,8]
Фибриноген, г/л	3,7 [3,1; 4,4]	3,6 [3,1; 4,2]

Примечание: данные представлены как медианы [Q1; Q3]. Выборка 1 — общая популяция больных, в ключенных в исследование. Выборка 2 — популяция больных, у которых исследован уровень цитокинов. СД — сахарный диабет; ИМТ — индекс массы тела; ОТ/ОБ — отношение окружности талии к окружности бедер; TIR — time in range (время в целевом диапазоне); TAR — time above range (время выше целевого диапазона); TBR — time below range (время ниже целевого диапазона); CV — Coefficient of Variation (коэффициент вариабельности); МАGЕ — Mean Amplitude of Glycemic Excursions (средняя амплитуда колебаний гликемии); МАG — Mean Absolute Glucose rate of change (скорость изменений уровня глюкозы); НbA_{1c} — гликированный гемоглобин, рСКФ — расчетная скорость клубочковой фильтрации; НЛС — нейтрофильно-лимфоцитарное соотношение; ИСИВ — индекс системного иммунного воспаления; вчСРБ — высокочувствительный С-реактивный белок.

Рисунок 1. Уровень маркеров воспаления низкой интенсивности в крови у больных сахарным диабетом 1 типа в зависимости от времени нахождения в целевом диапазоне.

А — С-реактивный белок, определенный высокочувствительным методом (вчСРБ), Б — фибриноген, В — соотношение нейтрофилы/лимфоциты (НЛС), Г — индекс системного иммунного воспаления (ИСИВ). Данные представлены как медианы, 25–75 процентили.

(p=0,018, p=0,026, p=0,037 p=0,101 соответственно, рис. 1). У пациентов с ТАR≥25% концентрация вчСРБ была достоверно выше, чем у пациентов с ТАR<25% (табл. 2). Значения обоих индексов воспаления также были выше у больных с ТАR ≥25%, хотя межгрупповые различия были ниже статистической значимости. Не выявлено корреляций исследованных маркеров и индексов воспаления с уровнем HbA₁, и параметрами ВГ.

В многофакторном линейном пошаговом регрессионном анализе с включением возраста, длительности СД1, ИМТ, TIR, TAR, CV, MAGE и MAG в качестве независимых

переменных, а маркеров воспаления — в качестве зависимых ИМТ был независимым предиктором уровня вч-СРБ (β =0,166, R2=0,04, p=0,0002) и фибриногена (β =0,299, R2=0,10, p<0,0001), в то время как МАGE показала независимую ассоциацию ИСИВ (β =0,123, R2=0,13, p=0,0001).

Цитокины в сыворотке крови

Цитокиновый профиль пациентов с СД1 характеризовался повышением концентраций IL-1β и IL-6 в сравнении с группой контроля. Концентрация IL-4 оказалась сниженной, а уровни IL-22 и IL-29 показали тенденции

Таблица 2. Уровень маркеров воспаления у больных сахарным диабетом 1 типа в зависимости от процента времени нахождения выше целевого диапазона

Параметр	TAR<25% (n=247)	TAR≥25% (n=223)	Р
ВчСРБ, г/л	1,26 [0,61; 2,55]	1,68 [0,82; 3,50]	0,009
Фибриноген, г/л	3,50 [3,10; 4,20]	3,70 [3,10; 4,40]	0,191
НЛС	1,71 [1,31; 2,53]	1,85 [1,48; 2,34]	0,089
ИСИВ	446 [319; 611]	483 [346; 653]	0,076

Примечание: данные представлены как медианы [Q1; Q3]. TAR — time above range (время выше целевого диапазона); НЛС — нейтрофильно-лимфоцитарное соотношение; ИСИВ — индекс системного иммунного воспаления; вчСРБ — высокочувствительный С-реактивный белок.

к снижению у больных СД1 (табл. 3). Пациенты с ИМТ \geq 25 кг/м² по сравнению с больными с ИМТ<25 кг/м² имели более высокие значения IL-1 β (3,7; 2,8–4,4 и 2,9; 2,5–3,8 пг/мл, p=0,006), sIL-6Ra (9428; 7765–12862 и 7624; 5927–9894 пг/мл, p=0,04) и IL-32 (4,9; 0–23,4 и 0; 0–2,1 пг/мл, p=0,02). С ИМТ слабо коррелировали уровни sIL-6Ra (r=0,24, p=0,006) и IL-34 (r=0,25, p=0,004). Прослеживались слабые положительные корреляции между уровнем HbA_{1c} и концентрациями IL-1 β (r=0,26, p=0,003) и IL-6 (r=0,23, p=0,008).

У пациентов, достигших значений TIR>70%, отмечался более высокий уровень IL-4, а также меньшие концентрации IL-1 β и IL-6, чем у больных с TIR≤70% (табл. 4). В ранговом корреляционном анализе величина TIR коррелировала с уровнем IL-1 β (r=-0,29, p=0,0008), IL-4 (r=0,22, p=0,01), IL-6 (r=-0,28, p=0,001); TAR показала противоположные корреляции с этими цитокинами (IL-1 β : r=0,33, p=0,0001; IL-4: r=-0,21, p=0,02; IL-6: r=0,29, p=0,0008). CV коррелировал с концентрацией IL-1 β (r=0,28, p=0,001), IL-6 (r=0,36, p<0,0001), MAGE показала связи с IL-1 β (r=0,25,

Таблица 3. Концентрации цитокинов в сыворотке крови (пг/мл) у лиц с нормальной толерантностью к глюкозе (контроль) и у больных сахарным диабетом 1 типа

Параметр	Контроль (n=27)	Больные СД1 (n=130)	Р
IL-1β	2,3 [2,0; 2,7]	3,5 [2,7; 4,1]	<0,0001
IL-4	4,9 [3,3; 5,9]	2,9 [0,56; 5,1]	0,002
IL-6	1,8 [0,67; 2,6]	5,1 [3,1; 6,7]	<0,0001
sIL-6Rα	9869 [5268; 13453]	8072 [6109; 10599]	0,3
IL-19	0 [0; 0]	0 [0; 0]	0,5
IL-20	0,93 [0,25; 2,2]	0,25 [0; 1,4]	0,2
IL-22	2,9 [0; 7,8]	0 [0; 4,4]	0,1
IL-26	652 [382; 893]	571 [463; 893]	0,9
L-27 (p27)	29 [12; 50]	39 [18; 67]	0,6
L28A	1,4 [0,48; 3,2]	1,4 [0,48; 2,9]	0,5
L-29	20 [5,4; 62]	9 [1,4; 20]	0,1
IL-32	0 [0; 25]	0 [0; 11]	0,4
L-34	0 [0; 54]	0 [0; 24]	0,5
IL-35	33 [21; 50]	38 [16; 82]	0,5

Примечание: данные представлены как медианы [Q1; Q3]. СД1 — сахарный диабет 1 типа; IL — интерлейкин.

Таблица 4. Концентрации цитокинов (пг/мл) в сыворотке крови у больных сахарным диабетом 1 типа в зависимости от времени нахождения в целевом диапазоне

Параметр	TIR≥70% (n=71)	TIR<70% (n=59)	P
IL-1β	3,1 [2,5; 3,9]	3,8 [3,1; 4,3]	0,0003
IL-4	3,8 [1,1; 5,9]	1,5 [0,42; 4,0]	0,02
IL-6	4,3 [2,4; 5,9]	5,5 [3,8; 7,0]	0,007
sIL-6Ra	8812 [6809; 11333]	9394 [5656; 9428]	0,5
IL-19	0 [0; 0]	0 [0; 0]	0,9
IL-20	0,30 [0; 1,4]	0,16 [0; 7,4]	0,7
IL-22	0 [0; 3,9]	0,19 [0; 7,3]	0,7
IL-26	571 [501; 893]	571 [443; 1013]	1,0
IL-27 (p27)	40 [18; 66]	30 [17; 69]	0,9
IL28A	1,4 [0,48; 2,9]	1,2 [0,28; 5,9]	1,0
IL-29	9,1 [1,4; 20]	11 [4,6; 21]	0,7
IL-32	0 [0; 11]	0 [0; 8,8]	1,0
IL-34	0 [0; 26]	0 [0; 13]	0,5
IL-35	36 [16; 65]	43 [9,9; 101]	0,6

Примечание: данные представлены как медианы [Q1; Q3]. СД1 — сахарный диабет 1 типа; IL — интерлейкин, TIR — time in range (время в целевом диапазоне).

Таблица 5. Предикторы уровня цитокинов в сыворотке крови у больных сахарным диабетом 1 типа (многофакторный пошаговый регрессионный анализ)

- Una-overs	Продикторы	Параметры модели	
цитокин	Цитокин Предикторы	R2	Р
IL-1β	TAR (β=0,199)	0,05	0,04
IL-20	ТІR (β=-0,36), ИМТ (β=0,287)	0,21	0,006
IL-26	МАGE (β=0,303), возраст (β=-0,34)	0,21	0,02
IL28A	MAGE (β=0,357)	0,13	0,007
IL-29	MAG (β=0,519)	0,27	<0,0001
IL-34	TIR (β=-0,35)	0,20	0,009

Примечание: IL — интерлейкин; TIR — time in range (время в целевом диапазоне); TAR — time above range (время выше целевого диапазона); ИМТ — индекс массы тела; TBR — time below range (время ниже целевого диапазона); MAGE — Mean Amplitude of Glycemic Excursions (средняя амплитуда колебаний гликемии); MAG — Mean Absolute Glucose rate of change (скорость изменений уровня глюкозы).

p=0,004), IL-4 (r=-0,23, p=0,008), IL-6 (r=0,36, p<0,0001) и IL-29 (r=0,38, p<0,0001).

В моделях многофакторного линейного пошагового регрессионного анализа, включавших возраст, длительность СД1, ИМТ, ТІR, ТАR, CV, МАGE и МАG как независимые переменные, а концентрации цитокинов — как зависимые, величина ТІR была отрицательно ассоциирована с уровнем IL-20 и IL-34, ТАR была положительно ассоциирована с IL-1β, МАGE — с IL-26 и IL28A, МАG — с IL-29 (табл. 5).

ОБСУЖДЕНИЕ

В этом исследовании мы тестировали гипотезу о том, что патогенетическое действие ВГ у больных СД1 может реализоваться через воспаление низкой интенсивности и дисбаланс в продукции цитокинов. Для этого был проведен анализ ассоциаций между времяи амплитудо-зависимыми параметрами НМГ и уровнем маркеров воспаления низкой интенсивности (вчСРБ, фибриноген, НЛС, ИСИВ), а также концентрациями ряда цитокинов в крови. Среди последних нами были исследованы не только хорошо известные молекулы (IL-1β, IL-4, IL-6), но и цитокины, пока еще недостаточно изученные при СД (sIL-6Ra, IL-19, IL-20, IL-22, IL-26, IL-27, IL-28A, IL-29, IL-32, IL-34, IL-35). Для исследования цитокинов мы применили мультиплексный анализ, позволяющий одновременно анализировать большое количество молекул. Полученные результаты свидетельствуют, что на выраженность воспаления низкой интенсивности у больных СД1 оказывают влияние как время в гипергликемии, так и амплитудозависимые параметры ВГ, а также наличие избыточной массы тела и ожирения.

Репрезентативность выборок

Выборка пациентов является репрезентативной в отношении пациентов с СД1 молодого и среднего возраста, не имеющих терминальных осложнений заболевания и сопутствующих иммуновоспалительных заболеваний. Репрезентативность выборки определяется большим количеством пациентов (470 человек), применением относительно небольшого числа критериев исключения.

Сопоставление с другими публикациями

Хроническое воспаление рассматривается как важный патогенетический механизм в развитии диабетических осложнений. В исследовании EURODIAB было показано, что комбинированный индекс воспаления, включающий вчСРБ, IL-6 и фактор некроза опухолей-α, у больных СД1 ассоциирован с наличием ретинопатии, повышенной альбуминурии и сердечно-сосудистыми осложнениями [13]. Недавно показано, что НЛС у больных СД1 отражает выраженность атеросклероза сонных артерий [23]. Признаки иммунной активации и субклинического воспаления при СД1 наблюдаются не только на этапе аутоиммунной деструкции β -клеток, но и при длительном течении заболевания. Изучение протеома плазмы крови у больных с длительным СД1 показало ассоциацию воспалительных медиаторов с нефропатией и инсультом [24].

У обследованных нами пациентов наблюдалось повышение уровня провоспалительных цитокинов IL-1β и IL-6 и снижение уровня противовоспалительного цитокина IL-4, что соотносится с концепцией воспаления низкой интенсивности при данном заболевании. Нами установлено, что выраженность воспаления низкой интенсивности (судя по уровню вчСРБ, фибриногена, ИСИВ, IL-1β и IL-6) выше у больных СД1, не достигающих значений TIR>70%. Величина TIR обратно коррелировала с концентрациями классических провоспалительных цитокинов IL-1β и IL-6 и прямо коррелировала с уровнем противовоспалительного цитокина IL-4. Величина TAR демонстрировала противоположные взаимосвязи с этими параметрами. Эти данные дают дополнительное патогенетическое обоснование значимости TIR как индикатора гликемического контроля.

В данном исследовании нами впервые показана значимость амплитудозависимых индексов ВГ как предикторов воспаления низкой интенсивности у больных СД1. В частности, амплитуда колебаний уровня глюкозы (МАGE) показала независимую ассоциацию с ИСИВ и уровнями IL-26 и IL28A, а скорость изменений уровня глюкозы (МАG) — с концентрацией IL-29. Это согласуется с биоинформатическими и экспериментальными данными об активирующем влиянии чрезмерных флуктуаций глюкозы на экспрессию генов воспалительных медиаторов и уровень этих медиаторов в крови [8–11].

При анализе ассоциаций между ВГ и маркерами воспаления нельзя не учитывать другие факторы, способные модифицировать эти ассоциации. Одним из таких факторов является ожирение. Современные исследования фиксируют увеличение распространенности избыточной массы тела и ожирения среди больных СД1 [25]. Это в известной степени меняет клиническую феноменологию заболевания, сближая ее с СД2. Известно, что у больных СД2 уровень воспалительных медиаторов в крови в значительной степени зависит от сопутствующего ожирения и массы жировой ткани [26]. В данной работе нами показано, что больные СД1 с ИМТ≥25 кг/м² имеют более высокий уровень вчСРБ, фибриногена, IL-1β, sIL-6Ra и IL-32 в крови по сравнению с пациентами с ИМТ<25 кг/м². Ранее сообщалось, что уровень вчСРБ связан с ИМТ у детей и взрослых с СД1 [27, 28]. Следовательно, ассоциация между избыточной массой тела, ожирением и субклиническим воспалением прослеживается и при СД1.

В данной работе мы исследовали у больных СД1 концентрации не только классических, но и относительно недавно идентифицированных интерлейкинов (IL-19, IL-20, IL-22, IL-26, IL-27, IL-28A, IL-29, IL-32, IL-34, IL-35). Предполагается участие некоторых из этих молекул в патогенезе СД1 [29]. Хотя мы обнаружили ассоциации некоторых из указанных цитокинов с параметрами ВГ, мы не получили однозначных данных об изменениях их уровней у больных СД1 в сравнении с контролем. Изучение роли «новых» цитокинов в патогенезе СД1, их связи с колебаниями гликемии, а также значимости их определения в контексте оценки воспаления и риска осложнений требуют дальнейших исследований.

Клиническая значимость результатов

Результаты исследования в очередной раз свидетельствуют о важности достижения целевых значений ТІЯ у пациентов с СД1. Сокращение времени в гипергликемии (ТАЯ) важно для предупреждения хронического воспаления — патогенетически значимого фактора сосудистых осложнений. Не менее важной задачей является поддержание нормальной массы тела у больных СД1, поскольку ожирение, как и гипергликемия, способствует развитию воспаления.

Ограничения исследования

Поскольку исследование одномоментное, мы не можем однозначно судить о причинно-следственных связях между признаками и их динамике. Обследование пациентов проводилось в условиях клиники. Это могло

привести к смещению значений параметров ВГ относительно тех, что наблюдаются в реальной жизни пациентов. Длительность НМГ была относительно короткой, что определялось сроками госпитализации.

Направления дальнейших исследований

Изучение влияния различных характеристик динамики уровня глюкозы на продукцию сигнальных и регуляторных молекул *in vitro* и *in vivo* является актуальной задачей для будущих исследований. Представляется перспективным изучение маркеров воспаления и цитокинов как маркеров развития и прогрессирования осложнений СД в проспективных исследованиях.

ЗАКЛЮЧЕНИЕ

У больных СД1, имеющих нецелевые значения ТIR (<70%), уровень маркеров воспаления низкой интенсивности (вчСРБ, фибриногена, ИСИВ) и сывороточных провоспалительных цитокинов (IL-1β, IL-6) выше, чем у больных СД1 с TIR>70%. Кроме того, значения ТIR отрицательно ассоциированы с уровнем IL-20 и IL-34. Амплитудозависимые параметры ВГ ассоциированы с выраженностью воспаления (величиной ИСИВ), уровнем IL-26, IL28A, IL-29. У больных СД1 с избыточной массой тела и ожирением наблюдаются более высокие уровни вчСРБ и фибриногена, чем у пациентов с ИМТ<25 кг/м². Таким образом, гипергликемию, ВГ, избыточную массу тела и ожирение можно рассматривать как детерминанты воспаления низкой интенсивности при СД1.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Источники финансирования. Исследование выполнено за счет гранта Российского научного фонда (проект №20-15-00057-П).

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Участие авторов. Мавлянова К.Р. — сбор клинического материала, формирование базы данных, анализ данных НМГ, статистический анализ, написание текста; Семенова Ю.Ф. — сбор клинического материала, формирование базы данных, анализ данных НМГ; Орлов Н.Б. — исследование уровня цитокинов; Климонтов В.В. — концепция и дизайн исследования, анализ данных, написание текста. Все авторы одобрили финальную версию статьи перед публикацией, выразили согласие нести ответственность за все аспекты работы, подразумевающую надлежащее изучение и решение вопросов, связанных с точностью или добросовестностью любой части работы.

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

- Ogle G, Wang F, Gregory GA, Manuam J. Type 1 diabetes estimates in children and adults. *IDF Atlas Reports*. 2022. Available at: https://diabetesatlas.org/atlas/t1d-index-2022/. Дата обращения: 31 марта 2024
- Дедов И.И., Шестакова М.В., Викулова О.К., и др. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010 2022 гг. // Сахарный диабет. 2023. Т. 26. №2. С. 104-123. [Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period
- 2010–2022. *Diabetes Mellitus*. 2023;26(2):104-123. (In Russ.).] doi: https://doi.org/10.14341/DM13035
- Diabetes Control and Complications Trial (DCCT)/
 Epidemiology of Diabetes Interventions and Complications
 (EDIC) Study Research Group. Intensive Diabetes Treatment
 and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC
 Study 30-Year Follow-up. *Diabetes Care*. 2016;39(5):686-93.
 doi: https://doi.org/10.2337/dc15-1990
- Sun B, Luo Z, Zhou J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. *Cardiovasc Diabetol*. 2021;20(1):9. doi: https://doi.org/10.1186/s12933-020-01200-7

- Hjort A, Iggman D, Rosqvist F. Glycemic variability assessed using continuous glucose monitoring in individuals without diabetes and associations with cardiometabolic risk markers: A systematic review and meta-analysis. Clin Nutr. 2024;43(4):915-925. doi: https://doi.org/10.1016/j.clnu.2024.02.014
- Li F, Zhang L, Shen Y, Liu HH, Zhang ZY, Hu G, Wang RX. Higher glucose fluctuation is associated with a higher risk of cardiovascular disease: Insights from pooled results among patients with diabetes. *J Diabetes*. 2023;15(5):368-381. doi: https://doi.org/10.1111/1753-0407.13386
- Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci. 2021;22(15):7783. doi: https://doi.org/10.3390/ijms22157783
- Saik OV, Klimontov VV. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. *Int J Mol Sci.* 2020;21(22):8691. doi: https://doi.org/10.3390/ijms21228691
- El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. *J Exp Med.* 2008;205(10):2409-2417. doi: https://doi.org/10.1084/jem.20081188
- Piconi L, Quagliaro L, Assaloni R, et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. *Diabetes Metab Res Rev.* 2006; 22(3):198-203
- Ceriello A, Novials A, Ortega E, et al. Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes. *Diabetes Care*. 2013;36(12):4104-4108. doi: https://doi.org/10.2337/dc13-0750
- Sharif S, Van der Graaf Y, Cramer MJ, et al. SMART study group. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes. *Cardiovasc Diabetol.* 2021;20(1):220. doi: https://doi.org/10.1186/s12933-021-01409-0
- Schram MT, Chaturvedi N, Schalkwijk CG, et al. EURODIAB Prospective Complications Study GroupMarkers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes — the EURODIAB Prospective Complications Study. *Diabetologia*. 2005;48(2):370-378
- Mo Y, Lu J, Zhou J. Glycemic variability: Measurement, target, impact on complications of diabetes and does it really matter? *J Diabetes Investig*. 2024;15(1):5-14. doi: https://doi.org/10.1111/jdi.14112
- Hoffman RP, Dye AS, Huang H, Bauer JA. Glycemic variability predicts inflammation in adolescents with type 1 diabetes. J Pediatr Endocrinol Metab. 2016;29(10):1129-1133. doi: https://doi.org/10.1515/jpem-2016-0139
- Klimontov VV, Mavlianova KR, Orlov NB, et al. Serum Cytokines and Growth Factors in Subjects with Type 1 Diabetes: Associations with Time in Ranges and Glucose Variability. *Biomedicines*. 2023;11(10):2843. doi: https://doi.org/10.3390/biomedicines11102843
- Klimontov V, Mavlianova K, Semenova J, Orlov N. Circulating peptides of the TNF superfamily and the TNF receptor superfamily in subjects with type 1 diabetes: relationships with clinical and metabolic parameters. Georgian Med News. 2023;(340-341):243-248

- Kietsiriroje N, Pearson SM, O'Mahoney LL, et al. Glucose variability is associated with an adverse vascular profile but only in the presence of insulin resistance in individuals with type 1 diabetes: An observational study. *Diab Vasc Dis Res.* 2022;19(3):14791641221103217. doi: https://doi.org/10.1177/14791641221103217
- Salsa-Castelo M, Neves C, Neves JS, Carvalho D. Association of glycemic variability and time in range with lipid profile in type 1 diabetes. *Endocrine*. 2024;83(1):69-76. doi: https://doi.org/10.1007/s12020-023-03464-x
- 20. Климонтов В.В., Семенова Ю.Ф., Корбут А.И. Факторы, ассоциированные с высокой вариабельностью гликемии у больных сахарным диабетом 1 типа // Сахарный диабет. 2022. Т. 25. №4. С. 347-357. [Klimontov VV, Semenova JF, Korbut Al. Factors associated with high glucose variability in patients with type 1 diabetes. Diabetes mellitus. 2022;25(4):347-357. (In Russ.)]. doi: https://doi.org/10.14341/DM12888
- Danne T, Nimri R, Battelino T, Bergenstal RM, et al. International Consensus on Use of Continuous Glucose Monitoring. *Diabetes Care*. 2017;40(12):1631-1640. doi: https://doi.org/10.2337/dc17-1600
- Ye Z, Hu T, Wang J, Xiao R, Liao X, Liu M, Sun Z. Systemic immuneinflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:933913. doi: https://doi.org/10.3389/fcvm.2022.933913
- Mariaca K, Serés-Noriega T, Viñals C, Perea V, et al. Neutrophilto-lymphocyte ratio is independently associated with carotid atherosclerosis burden in individuals with type 1 diabetes. *Nutr Metab Cardiovasc Dis.* 2024;34(2):395-403. doi: https://doi.org/10.1016/j.numecd.2023.09.017
- 24. Ajie M, van Heck JIP, Janssen AWM, et al. Disease Duration and Chronic Complications Associate With Immune Activation in Individuals With Longstanding Type 1 Diabetes. *J Clin Endocrinol Metab*. 2023;108(8):1909-1920. doi: https://doi.org/10.1210/clinem/dgad087
- Karamanakos G, Kokkinos A, Dalamaga M, Liatis S. Highlighting the Role of Obesity and Insulin Resistance in Type 1 Diabetes and Its Associated Cardiometabolic Complications. *Curr Obes Rep.* 2022;11(3):180-202. doi: https://doi.org/10.1007/s13679-022-00477-x
- 26. Климонтов В.В., Тян Н.В., Фазуллина О.Н., Мякина Н.Е., и др. Клинические и метаболические факторы, ассоциированные с хроническим воспалением низкой интенсивности, у больных сахарным диабетом 2-го типа // Сахарный диабет. 2016. Т. 19. №4. С. 295–301. [Klimontov VV, Tyan NV, Fazullina ON, Myakina NE, et al. Clinical and metabolic factors associated with chronic low-grade inflammation in type 2 diabetic patients. Diabetes mellitus 2016;19 (4):295-302. (In Russ.).] doi: https://doi.org/10.14341/DM7928
- 27. Pérez-Segura P, de Dios O, Herrero L, et al. Children with type 1 diabetes have elevated high-sensitivity C-reactive protein compared with a control group. *BMJ Open Diabetes Res Care*. 2020;8(1):e001424. doi: https://doi.org/10.1136/bmjdrc-2020-001424
- Fawaz L, Elwan A, Kamel Y, et al. Clinical researchValue of C-reactive protein and IL-6 measurements in type 1 diabetes mellitus. Arch Med Sci. 2009;5(3):383-390
- Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. *Clin Transl Immunology*. 2020;9(3):e1122. doi: https://doi.org/10.1002/cti2.1122

ИНФОРМАЦИЯ ОБ ABTOPAX [AUTHORS INFO]

*Климонтов Вадим Валерьевич, д.м.н., профессор [Vadim V. Klimontov, MD, PhD, Professor]; адрес: Россия, 630060, Новосибирск, ул. Тимакова, 2 [address: 2, Timakov street, 630060 Novosibirsk, Russia]; ORCID: https://orcid.org/0000-0002-5407-8722; eLibrary SPIN: 1734-4030; Researcher ID: R-7689-2017; Scopus Author ID: 8295977000; e-mail: klimontov@mail.ru

Мавлянова Камилла Рустамалиевна, м.н.с. [Kamilla R. Mavlianova, MD, junior researcher]; ORCID: https://orcid.org/0009-0009-3970-7218; eLibrary SPIN: 7591-8420; e-mail: kamilla.mavlyanova@mail.ru Семёнова Юлия Федоровна, м.н.с. [Julia F. Semenova, MD, junior researcher]; ORCID: https://orcid.org/0000-0003-3118-0406; Scopus Author ID: 55522435000; eLibrary SPIN: 9760-8801;

Орлов Николай Борисович, к.м.н., с.н.с. [Nikolay B. Orlov, MD, PhD, senior research associate]; ORCID: https://orcid.org/0000-0002-3437-7151; eLibrary SPIN: 9106-3532; e-mail: nbo700@mail.ru

e-mail: ekmxtyjr@yandex.ru

цитировать:

Мавлянова К.Р., Семёнова Ю.Ф., Орлов Н.Б., Климонтов В.В. Маркеры воспаления низкой интенсивности и уровни цитокинов в сыворотке крови у больных сахарным диабетом 1 типа: ассоциации со временем в диапазонах и вариабельностью уровня глюкозы // Сахарный диабет. — 2024. — Т. 27. — №3. — С. 214-223. doi: https://doi.org/10.14341/DM13159

TO CITE THIS ARTICLE:

Mavlianova KR, Semenova JF, Orlov NB, Klimontov VV. Markers of chronic low-grade inflammation and serum cytokine levels in patients with type 1 diabetes: associations with time in ranges and glucose variability. *Diabetes Mellitus*. 2024;27(3):214-223. doi: https://doi.org/10.14341/DM13159